首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
多目标粒子群优化算法研究   总被引:1,自引:0,他引:1  
在过去的十多年,粒子群算法对多目标优化问题的应用研究取得了较大的进展.本文首先描述多目标粒子群优化算法(MOPSO)的基本流程,然后从算法设计与应用等方面回顾MOPSO的研究进展,最后对该算法未来的研究进行了分析和展望.  相似文献   

2.
提出了一种基于密度聚类的领导粒子选择策略的多目标粒子群优化算法。首先,将粒子进行分类;然后,对外部档案采用改进的循环拥挤距离排序,并将高斯变异引入到进化种群,在保持具有全局搜索能力的同时,也避免了陷入局部最优。对WFG系列测试函数的仿真结果表明,与经典多目标优化算法相比,本文算法在解的收敛性和多样性等方面有显著的提升。  相似文献   

3.
一种离散型多目标粒子群优化算法   总被引:1,自引:0,他引:1  
为获得更好的非劣前端,提出一种离散型多目标粒子群优化算法。该算法根据离散型多目标优化问题的特点,将种群分成多个子种群,在各个子种群中利用表现型共享的适应度函数选择每个子种群的最优粒子。通过多个最优粒子的引导,使整个种群分布更均匀,避免陷入局部最优,保证了解的多样性。实验表明了该算法的有效性。  相似文献   

4.
多目标最优化的粒子群算法   总被引:8,自引:0,他引:8  
粒子群算法是一种新出现的进化算法,相对其它进化算法,它收敛速度快、规则简单、易于编程实现.采用粒子群算法对资产投资的多目标问题进行优化,解决了传统方法难以解决的问题.数值实例表明,采用该算法能对资产投资问题做出优化组合决策.  相似文献   

5.
基于密集距离的多目标粒子群优化算法   总被引:1,自引:2,他引:1  
设计出基于密集距离的多目标粒子群优化算法(CMPSO),该算法根据密集距离大小按轮盘赌方式为每个粒子从外部档案选取全局最好位置并采用基于密集距离的方法对外部档案进行维护.将算法应用于3个复杂的测试实例,并与强度Pareto进化算法2等算法进行比较,计算结果表明CMPSO具有良好的连续优化能力.  相似文献   

6.
基于多目标粒子群优化算法的输电网规划   总被引:3,自引:0,他引:3  
输电网规划是一个离散型、非线性、多目标的混合整数规划问题,难于求解.提出一种多目标粒子群优化算法用来求解输电网规划问题.在输电网规划模型中考虑了建设投资费用、运行费用及网损费用等3方面的因素.多目标粒子群优化算法基于Pareto支配关系来更新粒子的个体极值,并采用了精英归档技术,粒子的全局极值由档案库中的非劣解提供.使用Matlab7.1对Garver-6节点系统进行仿真计算,结果表明:与传统的单目标遗传算法相比,多目标粒子群优化算法获得的规划方案总费用更低,该方法可以提高输电网规划的经济性水平.  相似文献   

7.
基于表现型共享的多目标粒子群算法研究   总被引:1,自引:0,他引:1  
在多目标粒子群算法中,粒子的飞行由自身的最优位置和指导粒子决定,如何定义适应度选出合适的指导粒子,指导搜索过程向全局Pareto最优区域飞行,并保持种群在最优前端的多样性是算法的关键问题.针对上述问题,构造了同时考虑粒子的Pareto占优情况和目标空间邻近密集度的表现型共享适应度函数,在此基础上提出一个基于表现型共享的多目标粒子群优化算法(MOPSO).为了验证算法的有效性,采用占优等级指标来分析近似解集的占优情况,并采用EPS、HYP和R2指标来衡量解集的分布情况.实验结果表明,算法具有较强的全局搜索能力,能在较小的计算代价下获得较好的Pareto前端近似.  相似文献   

8.
为提高汽车的乘坐舒适性和行驶稳定性,对车辆主动座椅悬架提出一种基于多目标粒子群算法的滑模控制器设计方法。首先,在建立三自由度1/4车辆主动座椅悬架系统模型的基础上设计了满足李雅普诺夫稳定性理论的滑模控制器;其次,基于滑模控制到达条件和滑模面的稳定条件结合Hurwitz稳定判据选择合适的滑模面参数;然后,以汽车悬架动挠度、轮胎动载荷和控制器控制力输出为约束,形成以座椅质心垂直加速度、座椅悬架动行程以及轮胎动位移为控制目标的多目标优化问题,对滑模控制器参数进行优化设计;最后,在MATLAB环境下基于多目标粒子群算法进行求解,并进行数值仿真模拟。仿真结果显示,经过多目标参数优化后各目标值明显减小,表明基于多目标粒子群算法的滑模控制器参数优化显著地改善了汽车的乘坐舒适性和行驶稳定性,为汽车主动座椅悬架系统的研究提供了理论依据。  相似文献   

9.
为了利用粒子群优化算法解决作业车间调度问题,提出了将调度问题转化为连续优化问题的有效策略;设计了Pareto档案粒子群算法(PAPSO),该算法将档案维护和全局最好位置选取结合在一起,在档案维护过程中为每个粒子选取全局最好位置;给出了变异与PAPSO的结合新策略;最后将PAPSO和带变异的PAPSO应用于15个调度实例,以最小化总拖后时间和最大完成时间,与强度Pareto进化算法2等算法进行比较,结果验证了PAP—SO在作业车间调度方面的良好性能.  相似文献   

10.
为解决中点钳位型三电平牵引逆变器存在的中点电位不平衡以及由此而引起的输出电流谐波无法同时得到有效控制问题,提出了一种基于粒子群算法的牵引逆变器多目标优化控制策略。首先建立谐波抑制和中点电位平衡控制变量的数学模型;然后以输出电流谐波总畸变率最小为目标,以中点电位波动幅值尽可能小为约束条件,采用罚函数法构建了多目标优化模型。通过粒子群算法进行优化求解,实现在有效抑制输出电流谐波的同时最大程度降低中点电位波动幅值。仿真和实验结果验证了所提多目标优化控制策略的有效性。  相似文献   

11.
丁雷  段平 《中国工程科学》2010,12(2):101-107
针对铅锌烧结过程综合透气性、烧结终点的优化具有强非线性、计算复杂等特点,提出了一种有效的多目标粒子群协同优化算法。首先,建立了有综合透气性、烧结终点两个目标的优化模型。接着,通过改进的约束比较方法、粒子极值选取方法,以及利用不同的粒子群来分别优化相应的变量,提出了一种改进的多目标粒子群协同优化算法。最后,利用提出的多目标优化算法进行综合透气性、烧结终点的优化。仿真结果表明,所提出的多目标优化算法能较好地解决综合透气性、烧结终点的优化问题。  相似文献   

12.
郭占富  崔葛谨 《科技资讯》2008,(29):236-236
本文描述了一种新颖的基于粒子群的多目标优化方法,即自适应多目标粒子群优化。该算法采用自适应的方法,使惯性权重和加速度系数随时间的变化而改变,从而有助于算法更有效的探索搜索空间。对三个典型多目标测试函数所作实验的结果验证了该方法的有效性和快速性。  相似文献   

13.
基于粒子群算法的不确定动态多目标优化方法研究   总被引:1,自引:1,他引:0       下载免费PDF全文
当前不确定动态多目标优化方法通常将多目标问题转换成单目标问题,将其它目标看作约束条件,仅可得到单个解,无法有效体现不确定多目标之间的关系,导致得到的解质量低。为此,提出一种新的基于粒子群算法的不确定动态多目标优化方法,给出不确定动态多目标优化问题的数学描述,介绍了粒子群算法,针对粒子群算法容易陷入局部最优的弊端,引入动态变异算子对其进行改进,通过改进的位置更新公式实现粒子群算法位置的自适应更新,给出解决不确定多目标优化问题的详细过程,在此基础上,通过分段线性函数参数化实现不确定动态多目标优化。实验结果表明,所提方法搜索能力强,采用所提方法得到的解与真实解最相近,质量最高。  相似文献   

14.
为了更好地改善多目标粒子群优化算法的收敛性和多样性,提出一种基于扩容和双距离决策的多目标粒子群优化算法。利用扩容的方法对目标空间中目标函数值的上下限进行扩大,得到新的上下限后再建立网格,这样可以计算出边界点的坐标。在小网格中选择引导粒子或者劣质粒子时,利用小网格中粒子到理想点和当前小网格最优点的距离进行决策筛选,这样充分利用目标空间中的信息来对粒子的优先级进行判断。对新的粒子进行差分变异,增加了整体的多样性,并通过阈值控制其变异的频率。将算法和当前具有代表性的多目标粒子群优化算法进行对比实验,提出的算法效果更佳。实验表明,提出算法的收敛性和多样性不仅得到较大提高,而且较为稳定。  相似文献   

15.
提出了一种基于改进多目标粒子群优化算法(MOPSO)的发酵过程补料优化控制方法,并将该方法用于工业酵母发酵过程补料速率的优化控制。改进的MOPSO算法利用约束违反程度信息修正种群的学习进化公式,减缓了部分粒子在约束边界附近的飞行速度,提高了算法的全局搜索能力。仿真实验结果表明,改进的MOPSO算法能够获得最优的补料轨迹,有效地实现了工业酵母发酵过程补料速率的多目标优化控制。  相似文献   

16.
为提升矩形微通道的综合性能,通过多目标粒子群算法对矩形微通道进行数值优化,由响应曲面法拟合热阻函数,再以热阻与压降为目标函数,建立以矩形微通道结构参数为变量的多 目标粒子群算法的数学模型.由多 目标粒子群算法计算得到热阻与压降的pareto优化解集,用K-mean聚类法对优化解集进行聚类得到4个代表解,与未优化解进行对...  相似文献   

17.
针对大规模多目标优化问题,提出了一种基于分解的改进粒子群算法.该方法将分解策略与社会学习粒子群优化算法相结合引入到个体的学习过程中,针对每个个体及其邻域个体,计算其沿权重向量方向与参考点之间的距离以及与权重向量之间的距离并对它们进行排序,个体通过学习离参考点近的任意个体以及离权重向量近的所有个体实现位置的更新.在5个Z...  相似文献   

18.
采用基于场景的思想确定了风电机组功率输出,通过在潮流计算中增加对风电场节点电压的迭代解决了含风电场的潮流计算问题。建立了有功网损最小、电压偏差最小、静态电压稳定裕度最大的多目标无功优化模型,提出了多目标归一化处理方法,通过改变各分量权重系数解决了多目标无功优化问题。分析了基于遗传交叉因子的粒子群优化算法,通过父代的遗传交叉产生代表解的新粒子,有效避免了粒子解陷入局部最优。算例表明,该模型和算法可有效解决含风电场的多目标无功优化问题。  相似文献   

19.
针对基于专家经验对永磁滚筒优化设计时,寻优效率比较低的问题,构建了一种基于改进粒子群优化算法和RMxprt联合仿真的永磁滚筒多目标优化设计方法。首先,提出了一种改进粒子群优化算法,提高了寻优收敛速度;其次,在永磁滚筒结构参数与性能参数关系分析的基础上明确了面向改进粒子群优化算法的变量参数、约束参数和优化参数;最后,通过MATLAB编写改进粒子群优化算法程序,利用改进粒子群优化算法程序实现RMxprt输入参数与输出参数的闭环迭代与比较寻优,提高了永磁滚筒优化设计的效率和优化效果。  相似文献   

20.
针对传统多目标粒子群优化算法容易早熟的问题,提出一种基于三方竞争机制的反向多目标粒子群优化算法(MOPSO-TCOL).该算法利用当前种群在每一代中选择的三方竞争者来引导种群进化,这能够有效减少维护外部存档时的计算成本.在每次竞争中,MOPSO-TCOL从种群中随机挑选3个粒子进行比较,并基于不同的策略分别进行更新,这有利于保持种群的多样性.提出了一种基于反向学习策略的渐进式粒子更新方式,部分粒子进行反向学习以避免算法陷入局部最优,其他粒子通过向指定的更优粒子学习进行更新以加强收敛性.将所提出算法与8个多目标优化算法在14个标准测试函数上进行了性能比较试验.结果表明MOPSO-TCOL算法在多样性和收敛性上具有显著优势,且具有更快的收敛速度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号