首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用爆炸喷涂技术制备了碳化钨涂层,利用HT-1000高温摩擦磨损试验机研究了碳化钨涂层高温下摩擦磨损性能,通过扫描电子显微镜和X射线衍射分析了涂层磨损表面形貌、元素分布和相结构.结果表明:碳化钨涂层由雪花片状颗粒堆叠而成,如山地状,结合紧密.定温条件下,摩擦因数随着试验温度升高而减小,试验温度为550℃时,摩擦因数最小;磨损量随着温度升高而增大,550℃时,磨损量由于配副材料的转移出现了负增加.温度低于350℃时,磨损表面具有撕裂、轻微黏着和磨粒磨损痕迹;在550℃时,磨损表面发生了剥落、严重黏着和氧化磨损.连续升温条件下,温度低于300℃时,摩擦因数较小,在350~550℃范围内,摩擦因数波动较大;磨损表面以剥层、黏着和氧化磨损为主.  相似文献   

2.
阴极弧离子镀TiAlSiN涂层摩擦与磨损行为   总被引:1,自引:0,他引:1  
采用阴极弧离子镀法在GH4169合金表面制备了TiAlSiN涂层,通过扫描电镜和能谱仪分析了其表面和界面的形貌和能谱,用轮廓仪测试了涂层表面粗糙度.在往复式摩擦磨损试验机上进行了涂层摩擦与磨损实验,通过能谱仪分析了涂层表面磨损后点能谱和面能谱,考察了TiAlSiN涂层的摩擦因数和磨损性能,对其磨损机理进行了讨论.实验结果显示涂层表面组织结构较为致密,表面粗糙度为194.57 nm;涂层主要成分为Ti、Al、Si和N元素,Si原子细化了TiN和AlN晶粒;涂层结合界面发生了化学反应和成分的相互扩散,其结合形式为化学结合;涂层摩擦因数平均值为0.493,磨损形式为磨粒磨损;磨损痕迹面扫描结果表明,磨损后Al和Ti形成的氮化物减少,Si和N原子无明显的减少现象,涂层耐磨性增强主要依赖于Si和N形成的化合物.  相似文献   

3.
在面向高端制造业中,碳氮化钛(TiCN)基金属陶瓷刀具以其优异的切削表面质量,自身红硬性、耐磨性和抗氧化性等性能优异广受关注。针对TiCN基金属陶瓷在实际加工工程中的情况,研究材料在不同温度(600、700、800℃)条件下的高温摩擦磨损性能。采用X线衍射分析(X-ray diffraction,XRD)、场发射扫描电镜(field emission scanning electron microscopy,FESEM)、能谱仪(energy dispersivespectroscopy,EDS)、高温摩擦磨损试验机和轮廓仪分别分析不同温度下的氧化增重、表面形貌以及摩擦后表面形貌和摩擦因数之间的关系,初步探讨成分和组织结构对金属陶瓷高温摩擦磨损性能的影响。研究结果表明,室温时主要磨损机理为磨粒磨损和晶粒的滑出,高温时则为黏着磨损和氧化磨损,在摩擦磨损过程中摩擦层的形成和脱落对摩擦性能影响显著。  相似文献   

4.
采用温挤压技术对40Cr钢进行成形试验,考察了不同温度下温挤压试样的摩擦-磨损行为.通过扫描电镜、能谱仪和X射线衍射仪分析了40Cr钢磨损后表面形貌、化学元素分布和物相组成,讨论了40Cr钢温挤压的磨损机理.结果表明,在挤压温度为550℃时试样晶粒尺寸细小,残余奥氏体含量较高,硬度最高,其磨损性能为最佳;而当温度为650℃和750℃时,晶粒尺寸较粗大,残余奥氏体含量降低.在5N载荷作用下,挤压温度为550℃时,摩擦因数为0.7667;当挤压温度达到650℃,摩擦因数为0.8587,提高了12.01%,磨损性能降低;750℃时,摩擦因数为0.8764,相比550℃提高了14.31%,磨损性能进一步变差;在550、650和750℃时,磨损形式主要为磨粒磨损.  相似文献   

5.
为改善钢类机械零件磨损自修复性能,该文研制了含活化的锌、锡两种添加剂的新型磨损自修复润滑剂,并在改进的MS-800型摩擦磨损试验机上,考察了使用该润滑剂的钢-钢面接触摩擦副的磨损自修复行为及其摩擦学性能。用X射线能谱仪和扫描电子显微镜分析了钢试样表面的化学元素分布、形成的修复涂层厚度及其表面形貌。结果表明,研制的锌锡复合润滑剂对钢损伤表面具有良好的润滑修复和减摩抗磨性能,可在机械运转中在钢受损摩擦表面形成20μm厚的修复涂层。  相似文献   

6.
为了探讨离合器摩擦副材料在高温下的摩擦磨损机制,采用30CrSiMoVM钢作为与铜基粉末冶金摩擦片配对使用的对偶钢片,在MMU-10G高温端面摩擦磨损试验机上,研究30CrSiMoVM钢和摩擦片组成的摩擦副在室温到600℃之间的摩擦磨损性能。研究结果表明:随着温度升高,材料的强度逐渐降低,摩擦界面氧化膜不断形成与脱落,使摩擦副摩擦因数和磨损量总体趋势逐渐增大。在温度为300~500℃时,摩擦副摩擦因数和磨损量均平稳增大,表明摩擦副材料在此温度段摩擦磨损性能较稳定,磨损机制表现为磨粒磨损、氧化磨损和疲劳磨损;在600℃时,摩擦副材料表层软化,摩擦片摩擦因数和磨损量急剧增大,对偶钢片因表层黏着磨损严重,相对磨损量较小,磨损机制表现为黏着磨损、氧化磨损和疲劳磨损。  相似文献   

7.
采用自制板带式高温摩擦磨损试验机模拟实际热冲压条件下22MnB5硼钢裸板的高温摩擦过程,对模具进行预热,模拟了热冲压过程中的模具升温,并通过硼钢热冲压的摩擦因数、表面磨损形貌和截面图及基体组织图研究模具升温对硼钢裸板摩擦行为及机理的影响.结果表明:模具升温较低时,硼钢裸板与H13钢之间的摩擦因数基本稳定在0.5,其磨损机理以磨粒磨损和黏着磨损为主.当模具升温超过100℃,硼钢裸板摩擦因数随温度升高呈现下降趋势,在150℃和200℃分别为0.474和0.414,黏着磨损作用减弱.硼钢基体维氏硬度在室温至100℃基本稳定在430,随温度进一步升至150℃和200℃,硬度分别降至413.5和399.7,表明模具升温对成型件机械性能有显著影响.  相似文献   

8.
采用阴极弧离子镀法在Ni-Fe-Cr基高温合金表面制备了AlCrN涂层.通过电子扫描电镜、能谱仪、X射线衍射仪和X射线光电子谱仪等分析了AlCrN涂层表面和界面的形貌、能谱、物相以及结合能谱,并进行了800和900℃高温氧化实验,研究了AlCrN涂层抗高温氧化性能及其机理.实验结果表明:AlCrN涂层主要成分为Al、Cr和N元素,添加Al元素后表现出较强的AlN择优取向;Al2p峰谱为Al—N和Al—O结合键,Cr2p峰谱为Cr—O和Cr—N结合键,N1s峰谱以Cr—N和Al—N的形态存在,另外含有少量的N—Cr—O和N—Al—O结合键;经过高温氧化后AlCrN涂层表面氧化物为Cr2O3,对高温合金基体有良好的保护作用.  相似文献   

9.
采用Bruker UMT-3Tribolab摩擦磨损仪测试了与宝山钢铁股份有限公司共同开发的破冰船用低温钢板10CrMn2NiSiCuAl在不同环境温度下的摩擦磨损性能,利用轮廓扫描仪和扫描电子显微镜表征了磨痕及磨屑的表面形貌,采用电子能谱(EDS)以及X射线衍射谱(XRD)分析了磨屑表面的化学元素及成分,进而推断其磨损机制。结果表明:环境温度对摩擦磨损的性能有显著影响,当环境温度为20℃时,摩擦磨损形式以疲劳失效、氧化磨损和黏着磨损为主,磨痕表面的过渡层能够降低摩擦系数,减少磨损量,表面磨损产物主要为Fe_2O_3和Fe_3O_4;随着环境温度降低至-20℃,磨损机制转变为微切削作用下的磨粒磨损和塑性变形,磨痕表面出现犁沟形貌,磨损产物主要为Fe元素,磨屑的长宽比减小,出现球形磨屑,磨损量急剧增加。  相似文献   

10.
以金属Ni和Al_2O_3-TiO_2粉末为原料,利用机械混合法制备Ni与Al_2O_3-TiO_2质量比为9∶1的复合粉末。采用大气等离子喷涂技术在20钢表面制备复合涂层,在干摩擦条件下,采用QG-700型摩擦磨损试验机,分别在20℃、200℃和500℃环境温度条件下,测试了复合涂层的摩擦磨损性能。采用X射线衍射仪(XRD)和扫描电镜(SEM)表征复合涂层的组织及磨损形貌,分析其磨损机制。研究结果表明:复合涂层呈典型的层片状结构,以Ni、NiO、TiO和α-Al_2O_3相为主。随着环境温度的升高,复合涂层的摩擦因数和磨损率均呈现出先增大后减小的趋势,磨损机制由片状剥落转变为磨粒磨损。  相似文献   

11.
为了改善聚合物的高温摩擦学性能,从仿生学设计角度出发,将聚α烯烃(PAO)润滑油加入聚合物获得含油聚合物,并将含油聚合物填充至叠层沟槽表面,制备了含油叠层复合材料,并利用销盘摩擦试验机研究了不同温度下该材料的摩擦学性能。摩擦试验结果表明:随着试验温度升高,无油叠层复合材料的摩擦因数显著增大,并在150℃时发生润滑失效;含油叠层复合材料在25~150℃范围内具有极低的摩擦因数,但在200℃时平均摩擦因数增大到0.18。采用扫描电子显微镜进行磨损表面形貌分析,发现在高温摩擦时,无油叠层复合材料的金属表面为严重的磨粒磨损,聚合物表面为烧蚀磨损;含油叠层复合材料的金属表面为轻微的擦伤,聚合物表面为塑性流动。分析表明,含油聚合物的多孔结构中储存着润滑油,在温度激励下润滑油发生迁移运动,在热驱动下润滑油向摩擦表面渗出并能形成稳定的润滑油膜,从而改善了叠层复合材料的高温润滑寿命。  相似文献   

12.
以水作为分散介质,制备了含丙烯酸树脂和MoS2颗粒的分散液,以阳极氧化为前处理,采用电化学共沉积法在镁合金表面制备了MoS2/树脂杂化涂层;采用MR 060型多功能摩擦磨损试验机考察涂层的摩擦磨损性能,并分析其磨损机制;采用PARSTAT2273型电化学工作站测试涂层的电化学阻抗谱及极化曲线;利用扫描电子显微镜和能谱仪分析涂层的表面形貌及结构.结果表明:所制备的涂层厚度高达50 μm,在质量分数为3.5%的NaCl溶液中表现出优异的耐腐蚀性能;MoS2的加入,能够有效降低涂层的摩擦系数,提高其耐磨性.  相似文献   

13.
研究了400~800℃时,干摩擦条件下ZTA陶瓷销/3Cr2W8V钢盘的滑动摩擦磨损行为。测定了此摩擦副的摩擦系数和销的磨销因子。通过对销磨损面的SEM形貌观察、EPMA微区成分分析及X射线衍射相分析,讨论了ZTA陶瓷的磨损。试验结果表明:ZTA陶瓷在600℃时,以陶瓷晶粒的脱落和断裂为主要磨损机理,表现出比400℃时有较大的磨损。800℃时由于钢盘已高温软化,而陶瓷销表面形成半透明无定形膜,有利于减少ZTA陶瓷的磨损,从而表现出优良的高温耐磨性。  相似文献   

14.
三维网络SiC陶瓷/金属复合材料摩擦性能的研究   总被引:2,自引:1,他引:1  
以三维网络SiC陶瓷/Fe-Cu合金复合材料作为静片、三维网络SiC陶瓷/40Cr复合材料作为动片,研究了法向载荷、摩擦时间和pv值对该材料体系摩擦因数的影响以及摩擦次数对静片磨损量的影响,并采用金相显微镜观察了复合材料的显微结构和磨损表面形貌,分析了材料的摩擦磨损性能和磨损机理.结果表明:该摩擦副的稳定摩擦因数在0.33~0.35之间,摩擦过程中材料的磨损机理以磨粒磨损和粘着磨损为主,材料表面摩擦形成的氧化层硬度较高,是该材料耐磨性能优良的主要原因.  相似文献   

15.
采用线材火焰喷涂制备铝基涂层,随后对涂层进行重熔和扩散处理.利用扫描电镜、X射线衍射仪、能谱仪、摩擦磨损实验仪等对涂层的成分、物相、耐高温氧化性能、耐蚀性能等进行分析测试.结果表明:涂层分为两层,外层的物相主要是Al、FeAl3、内层是Fe2 Al5和少量的FeAl3;显微硬度有了很大程度的提高,峰值可达HV 950;渗铝试样在800、900℃进行高温氧化实验几乎不增重,抗氧化性能较铸铁可提升几十倍;同时试样也兼具良好的耐摩擦磨损和耐腐蚀性能.  相似文献   

16.
以Ti、Al和Cr为靶材,采用阴极离子镀在YT14硬质合金刀具表面制备一层AlTiCrN涂层,通过扫描电镜、能谱仪和X射线衍射仪分析了其表面和界面形貌、化学元素组成和物相,并用线扫描和面扫描研究了涂层中化学元素在结合界面处扩散机理. 用划痕法表征其界面层结合强度,对界面结合机理进行了讨论. AlTiCrN涂层的物相主要以AlN、CrN和TiN为主,涂层在(111)晶面具有很强的择优取向. 涂层中Al、Ti、Cr和N原子数分数高于基体,在结合界面处呈阶梯状过渡分布,基体中C原子扩散进入TiN、AlN和CrN晶格点阵中,形成明显的扩散层. 涂层结合界面为机械﹢扩散形式,其结合方式主要是由吸附结合、扩散结合和化合结合方式组成. 划痕过程中涂层经历弹性变形、塑性变形和涂层剥离三个阶段,界面结合强度为59. 2 N.  相似文献   

17.
为了研究重载顶推装备滑动副的摩擦磨损性能,提出一种可以模拟重载顶推装备顶推过程的试验台,研究以聚四氟乙烯(PTFE)/丙烯腈-丁二烯-苯乙烯(ABS)/二硫化钼(MoS2)复合材料和0Cr18Ni9不锈钢组成的滑动副在不同载荷且无润滑工况下,摩擦因数变化趋势并揭示摩擦副的磨损机理。利用扫描电子显微镜(SEM)和能谱仪(EDS)对滑动副磨损后的表面微观形貌和化学成分进行分析。研究结果表明:随着滑动次数的增加,滑动副摩擦因数呈先增大后减小,最后趋于稳定的变化趋势。重载下滑动副摩擦因数初始值高于轻载下摩擦因数,但最终稳定值低于轻载下摩擦因数。轻载下主要磨损机制表现为磨粒磨损和黏着磨损;而重载下主要磨损机制表现为黏着磨损和疲劳磨损。  相似文献   

18.
以针刺整体炭毡为坯体,采用化学气相浸渗法(CVI)增密制备C/C多孔体,然后采用熔硅浸渗C/C多孔体制备C/C-SiC复合材料。在MM-1000摩擦磨损试验机上测试该材料在不同刹车速度下的摩擦磨损行为,分别用金相显微镜和扫描电子显微镜观察摩擦表面及磨屑形貌。结果表明:复合材料摩擦因数随刹车速度的增加先升高后降低最后趋于稳定;在速度为2 500 r/min时,摩擦因数达到0.52;磨损量随刹车速度的提高而降低,在速度为1 000 r/min时,线性磨损量为最大值21.3μm/(面·次);当刹车速度小于4 000 r/min时,摩擦磨损机理为很严重的磨粒磨损,当速度大于4 000 r/min时,摩擦磨损机理以粘着磨损和氧化磨损为主。  相似文献   

19.
采用等离子粉末堆焊工艺在316H不锈钢表面堆焊Tribaloy® T400 (T400) 合金涂层,研究焊接时不同焊接热输入对堆焊件表面形貌、成分、维氏硬度、摩擦因数以及磨损质量的影响。结果表明:当焊接热输入为840 J/mm时,堆焊件表面没有明显的缺陷,维氏硬度以及耐磨性能达到最佳,且Cr元素含量最低;对316H不锈钢和堆焊件的磨损机制进行研究发现,316H不锈钢的磨损机制主要为剥层磨损,伴随有少量氧化磨损,堆焊件的磨损机制主要为磨粒磨损,伴随有黏着磨损。对焊接热输入为840 J/mm的堆焊件在700 ℃的环境中进行时效实验,堆焊件的维氏硬度随着时效时间的延长而增大,堆焊件经1000 h时效后,维氏硬度由原来的528增加到602,堆焊层具有较高的高温力学稳定性。  相似文献   

20.
高铝铜合金激光熔敷层高载荷干摩擦下的摩擦磨损特性   总被引:1,自引:0,他引:1  
采用激光熔覆技术在45#钢基体上制备高铝铜合金涂层,对涂层进行较高载荷下的干摩擦磨损实验研究,测定不同载荷下涂层的摩擦系数,观察涂层的磨损形貌,测量涂层不同载荷下的磨损失重量,探讨涂层的磨损机理。结果表明:随外加载荷的增加,激光熔覆层的摩擦因数变化很小,其值在0.65~0.83,具有很好的摩擦稳定性,磨损量随载荷的增加逐渐增大,但不同载荷下涂层的磨损机理不同,在100N的较低载荷下,涂层以磨粒磨损和刮擦磨损为主,随载荷增加到200、300N时,磨损失重的主要原因是切削磨损和磨粒磨损,当载荷超过400N时,涂层的磨损形式则以磨粒磨损、粘着磨损和剥落磨损的复合磨损形式体现.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号