首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
设λ1,λ2,...,λn(可以相同)为实矩阵A的所有特征值,记为σ(A)=(λ1,λ2,...,λn).n阶符号模式矩阵S=(sij)是指元素取自{ ,-,0}的矩阵,S的定性矩阵类是指集合Q(S)={A=(aij)∈M\{n\}(R):对所有的i和j,sign(aij)=sij},记σ(S)={σ(A):A∈Q(S)}.设S为n阶符号模式矩阵,λ1,λ2,…,λn为n个任意复数,若λ1,λ2,…,λn中的虚数都与其共轭复数成对出现时,便存在A∈Q(S),使得σ(A)=(λ1,λ2,…,λn),则称S为谱任意模式.在本文中,我们得到两个谱任意模式.  相似文献   

2.
设A.B为n阶Henmite阵,X为任-nxk复矩阵,λ1(A)≥λ2(A)≥…≥λn(A)依次表示A的特征值,得到了关于矩阵迹的如下不等式:并利用所得结果给出关于矩阵迹的一些Kantomvich型不等式。  相似文献   

3.
定理设 A 为正规矩阵,则以下各种情况等价:(1)A 是正定正规矩阵.(2)R(A)是正定(对称)矩阵.(3)A 的任一特征值的实部大于零,即 Re(λ(A))>0.(4)(?)(?)表示 n 阶矩阵 A 的任一 k 阶主子阵,1≤i_1|Im(λ(B))|;Re(λ(B)),Im(λ(B))  相似文献   

4.
设A是一个n阶的任意复矩阵且E是A的Hermite秩1扰动,即E=xx',其中x是n维的复列向量,x'是x的共轭转置向量.则A+E为矩阵A的Hermite秩1修正矩阵.基于矩阵分析理论中Hermite矩阵特征值分布的性质,研究得到了矩阵A特征值的任意Hermite秩1修正扰动的上下界限,即给出了矩阵A+E特征值的上下界限:λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤λ_i(H(A))+u_i(x)+δ'_i(i=1,n),λ_i(H(A))+l_i(x)+δ_i≤R(λ_i(A+xx'))≤min{λ_i(H(A))+u_i(x),λ_(i-1)(H(A))}+δ'_i(2≤i≤n-1),且λ_(min)(-SH(A)τ)≤S(λ_i(A+xx'))≤λ_(max)(-SH(A)τ)(1≤i≤n),其中δ_i=sgn(‖SH(A)‖_2)[λ_(min)(H(A))-λ_(i-1)(H(A))-u_i(x)],δ'_i=sgn(‖SH(A)‖_2)[λ_(max)(H(A))-λ_i(H(A))-l_i(x)+‖x‖_2~2],gap_i=λ_(i-1)(A)-λ_i(A),i=2,…,n,H(A)和SH(A)分别代表矩阵A的Hermite部分和反Hermite部分,τ=(-1)~(1/2),sgn(·)代表符号函数.当A为Hermite矩阵时,上述结果退化为已有的结果λ_i(A)-‖x‖_2~2≤R(λ_i(A+xx'))≤λ_i(A)+‖x‖_2~2.  相似文献   

5.
在高等代数中有这样一个性质:设n阶矩阵A适合方程λ~2+aλ+b=0(a,b是任意复数)则 (ⅰ) 当a~2-4b≠0时,A相似于矩阵 (1) 此处λ_1,λ_2是λ~2+aλ+b=0的两个根,γ=秩(A-λ_2I_n); (ⅱ)当a~2-4b=0时,A相似于矩阵此处λ_1是λ~2+aλ+b=0的二重根,γ=秩(A-λ_1I_n); (ⅲ)如果A又是厄米特矩阵时,A酉相似于矩阵(1)  相似文献   

6.
本文证明了下面两点:(1)设A 是n×n 矩阵,那么A 相似于(?)为若当块矩阵,它仅有一个特征值和一个线性无关的特征向量.(2)者|λI-A|=(λ-λ_1)~(r_1)-(λ-λ_2)~(r_2)…(λ-λ_3)~(r_3),其中λ_1,λ_2,…,λ_3两两不同,那么dimN(A-λI)~(r(?))=r_(?)(i=1,2,…,8)其中Ⅳ(A-λ_1I)~(r(?))={α|α∈U~n,(A-λI)~(r(?))·α=0}.U~n 是n 维列向量.  相似文献   

7.
设A,B均为正规矩阵,关于正规矩阵的特征值扰动,有结论 (n∑i=1︱μτ(i)-λi︱2)(1/2)≤n(1/2)‖E‖F,其中λi,μi分别为A,B的特征值.通过新的方法证明给出特征值扰动上界的新估计,并改进了以上结论.  相似文献   

8.
设A为n阶的Hermite矩阵,β是复数域上的一个n维向量,a是一个实数,B=Aββ-′a称为A的镶边矩阵.设A的特征根为λ1≥λ2≥…≥λn,B的特征根为μ1≥μ2≥…≥μn 1,文献中王松桂等人证明了A与B的特征根满足如下关系:μ1≥λ1≥μ2≥…≥λn-1≥μn≥λn≥μn 1.该文利用实数域上连续函数的性质给出了该结论的一个新的证明.  相似文献   

9.
设G是一个简单无向图,A(G)是图G的(0,1)邻接矩阵.定义S(G)=J-I-2A(G)是图G的Seidel矩阵,SG(λ)=det(λI-S(G))是图G的Seidel特征多项式(本文中简记为Seidel多项式),其中I是单位矩阵,J是全1矩阵.如果SG(λ)的特征值都是整数,则图G被称为是S-整图.本文主要研究完全四部图G=Kn1,n2,n3,n4的Seidel多项式及SG(λ)的特征根,给出了完全四部图Kn1,n2,n3,n4是S-整图的充要条件.  相似文献   

10.
设A∈Cn×n,B=A+E为其扰动矩阵,A、B的特征值分别为λ(A)={λk},λ(B)={μk}.关于特征值的传统误差界是估计|μ1-λ1|.利用矩阵的奇异值分解得到了可对称化矩阵特征值的wielandt型绝对扰动上界,改进了以往的结果.  相似文献   

11.
本文利用矩阵纯函数的多项式表示来给出矩阵纯函数的复合函数运算性质的一个初等证法.即证明:设A为复合域上的n阶方阵,(?)(λ),ψ(λ)=f[(?)(λ)]为复数数值函数,纯函数(?)(A),ψ(A),是确定的,那么命B=(?)(A),则f(B)也是确定的,并且ψ(A)=f[B]=f[(?)(A)].  相似文献   

12.
Cauchy不等式和Kantorovich不等式的推广   总被引:3,自引:0,他引:3  
设A为n×n正定Hermite阵,x为n维列向量,λ1≥λ 2≥…≥λn>0为A的特征值,得到了Cauchy不等式及Kantorovich不等式的如下推广形式:(x*A α1+α2+...+αk/k/x)k≤x*Aα1x...x*Aαkx,其中α1,α2,...αk为任意实数.(x*Aαx)β(x*A-βx)α≤/ααββ/(α+β)α+β/(λ1α+β-λnα+β)α+β/(λ1λn)αβ(λ1α-λnα)α(λ1β-λnβ)β/(x*x)α+β.其中α,β为任正数.  相似文献   

13.
目的讨论模糊矩阵幂序列基于max-Rt0(其中Rt0是与算子R0相伴随的t-模,以下简记为max-R0)复合意义下的收敛性。方法利用了模糊矩阵A的截矩阵Aλ(λ∈(0.5,1])的收敛性。结果记n阶模糊矩阵A基于max-min复合意义下收敛为(1)、基于max-R0复合意义下收敛为(2)、基于max-Lu复合意义下收敛为(3)、基于max-product复合意义下收敛为(4),则(1)(2)(3)(4)。结论在max-R0复合意义下,n阶模糊矩阵A要么有限收敛、要么有限振荡,且收敛的充分必要条件是对任意λ∈(0.5,1],Aλ收敛。  相似文献   

14.
设M2是2×2全矩阵代数,又设P2为M2中全体幂等矩阵构成的子集.假设映射φ:M2→M2满足A-λB∈P2(=)φ(A)-λφ(B)∈P2.其中A,B∈M2,λ∈C.若存在可逆矩阵T∈Mn,使下式之一成立φ(A)=TAT-1,A∈M2或φ(A)=TA1T-1,A∈M2.  相似文献   

15.
如果λ_1,…,λ_n是对称矩阵A的特征值,P. Tarazaga证明了|tr(A)/n-λ_i|≤[(n-1)/n(‖A‖_F~2-tr(A)~2/n)]~(1/2)对λ_i,i=1,…,n。本文中得到了一个等式成立的充分必要条件,由此给出一类特殊对称矩阵特征值的计算方法,而且证明了下面的定理:如果对称正定矩阵A仅有k个特征值大于或等于αtr(A),0<α<1,则tr(A)/‖A‖_F≥P_k(α)~(1/2),其中P_k(α)~(-1)=[1-(k-1)α]~2+(k-1)α~2,进而得到正定对称矩阵每一个特征值的上界估计。  相似文献   

16.
给出矩阵A的最小多项式m(λ)的两个性质:(1)n阶矩阵A的全体实系数多项式所成的线性空间W的维数等于A的最小多项式m(λ)的次数k;(2)对于次数大于零的任意多项式f(λ),f(A)为非退化的充分必要条件是f(λ)与m(λ)互素.并举例说明了矩阵最小多项式在解决某些问题时的有效性.  相似文献   

17.
设G是一个n阶简单连通图,图G的邻接矩阵记为A(G),令D(G)是G的顶点度对角矩阵,定义G的拉普拉斯矩阵L(G)=D(G)—A(G),设L(G)的特征值为λ_1≥λ_2≥…≥λ_(n-1)≥λ_n=0.在本文中,采用移接变形方法,讨论了树的代数连通度和直径之间的关系,获得了下面的结论:当树的顶点数固定时,树的代数连通度随着树的直径的增加而减少.进一步地,利用Cauchy-Schwarz不等式,讨论了树的代数连通度的界.  相似文献   

18.
设A=(a_(ij))是一个nxn非负相关矩阵,=(a_(ij)~2和=(a_(ij)perA(i,j))。本文得出下面两个结论:①(?)的最大特征值λ满足λ≤per(A);②的最大特征值λ满足λ=per(A)。这里per(A)记矩阵A的积和式。  相似文献   

19.
A-G-H不等式的优化推广及其应用   总被引:2,自引:0,他引:2  
借助于被称为降维法的新方法,建立了如下不等式:设ai>0,i=1,…,n,n≥2,A(a)1/n,H(a)=1-1-1ai,G(a)=∏n,则当且仅当实数λ≤1ai=1n∑nn时有不等式:n∑ni=1i=1i=1[H(a)]1-λ·[A(a)]λ≤G(a).作为应用,获得了一个几何不等式及一个有趣的矩阵不等式,并且推广了Carleman不等式.  相似文献   

20.
设A,E为n×n阶矩阵,对于2个矩阵行列式之差的上界估计,有结论 det(A+E)-det(A)≤∑n i=1(n i) An-i2Ei2≤(A2+E2)n-An2.其中这里的A2表示矩阵A的谱范数.通过一种新的矩阵范数改进该结论,运用Matlab进行了实例验证,结果更优.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号