首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 87 毫秒
1.
利用超临界CO2萃取技术对栝楼籽油的萃取条件进行了研究.采用单因素试验和正交试验分析了栝楼籽粉碎细度、萃取温度、萃取压力和萃取时间对萃取得率的影响,确定了萃取栝楼籽油的最佳工艺条件.结果表明,利用超临界CO2萃取栝楼籽油的最佳工艺条件为栝楼籽粉碎细度90目、萃取温度50 ℃、萃取压力30 MPa、萃取时间3 h,萃取得率可达39.6%.  相似文献   

2.
超临界CO2萃取枸杞籽油的研究   总被引:14,自引:0,他引:14  
提出了用超临界CO2萃取枸杞籽油的方法,研究了不同萃取压力、温度、流量、颗粒细度和萃取时间对萃取率的影响。当萃取压力为25~30MPa温度为35~45℃,流量为40kg/h时,萃取3h,可将枸杞籽中90%以上的油萃取出来。另对枸杞籽油的万分进行了分析。  相似文献   

3.
超临界CO2萃取益智油及益智油的抗氧化活性   总被引:2,自引:1,他引:1  
运用超临界CO2分离技术萃取益智仁中的抗氧化性物质,以1,1-二苯基-2-苦基苯肼(DPPH)清除率和过氧化值为检验指标。采用气相色谱一质谱联用技术分析超临界CO2萃取的益智油的化学成分.分析结果表明,在40℃,15MPa下分离萃取的益智油中含有诺卡酮、益智酮A和益智酮B.不同条件萃取的益智油对花生油的抗氧化性顺序为:40℃,15MPa下的萃取油〉2,6-二叔丁基对甲酚(BHT)〉35℃,25MPa下的萃取油〉50℃,12MPa下的萃取油〉35℃,25MPa(乙醇夹带)下的萃取油.超临界CO2萃取所得的益智油对DPPH的清除率明显高于水蒸气萃取油,其中,40℃和15MPa下所得的萃取油对DPPH的清除率最高;高温萃取油对DPPH的清除率有所降低.  相似文献   

4.
本文对超临界CO_2萃取和乙醇回流萃取花椒油风味物质的方法进行了比较,并用气相色谱-质谱对提取物进行组成鉴定。结果表明,超临界CO_2萃取法具有提取率高、萃取成分全面、提取时间短、无溶剂残留等优点。同时由正交试验得到超临界CO_2萃取的最佳工艺:原料粒度40目,萃取时间1.0h,温度45℃,压力33MPa。  相似文献   

5.
超临界CO2萃取天然香料的研究进展   总被引:7,自引:0,他引:7  
超临界萃取技术是一种新兴的分离技术,论述了超临界流体萃取技术的重要性,对超临界流体萃取技术在天然香料提取方面的最新应用研究进行了总结,对天然香料超临界萃取的数学建模进行了综述,其中包括收缩核模型、多孔球DDD模型、微分质量守恒模型等。  相似文献   

6.
胡麻籽油提取工艺的研究   总被引:1,自引:0,他引:1  
以胡麻籽出油率为指标,兼顾胡麻籽油的品质,研究胡麻籽油的提取工艺。结果表明,冷压榨法的平均出油率为32.36%;溶剂提取法平均出油率为29.13%,较佳的提取条件为:溶剂为石油醚,提取温度80℃,料液比1∶6(M/V);超临界CO2萃取法平均出油率36.70%,较佳的提取条件为CO2流量25 L/h,萃取压力30 MPa,萃取温度30℃,萃取时间2 h。综合分析认为:溶剂提取法存在溶剂残留等问题,在实际生产中不宜采用。冷压榨法生产成本低,可满足普通食用要求。超临界CO2萃取法生产的胡麻籽油品质好、出油率高,但生产成本高,可用作生产高品质保健食品的原料油。  相似文献   

7.
超临界CO2萃取烟叶中尼古丁工艺探索   总被引:1,自引:0,他引:1  
文章主要探索加工低尼古丁香烟原料的工艺.采用了超临界CO2萃取法考察了萃取压力、夹带剂添加量、时间及温度对烟叶中尼古丁含量的影响,并进行了正交优化试验;研究结果表明,压力是影响萃取的最显著因素,其次是夹带剂、时间、温度,最优条件为A3B2C3D2,即萃取压力21 MPa、添加水量为20%、时间120 min、温度55 ℃时,每克烟叶中尼古丁降低到0.41 mg.  相似文献   

8.
超临界CO2萃取在中草药研究中的应用   总被引:1,自引:0,他引:1  
针对近30年来迅猛发展的超临界CO2萃取技术,总结了其典型工艺流程,并进行了分类比较,指出了各种工艺流程的优、缺点,为同类研究提供了参考;接着探讨了其在中草药研究中的主要优点、应用现状,以及今后我国中草药走向国际市场需要解决的关键问题。  相似文献   

9.
报道了用超临界CO2萃取技术提取、分离和纯化辣椒红色素的最佳工艺条件:萃取压力为22NPa,萃取温度为40℃,在控制流速为25kg/h时萃取时间为2小时,水作为夹带剂.  相似文献   

10.
乔聪玲 《甘肃科技》2005,21(5):51-52,57
通过对超临界CO2萃取技术的原理、特点、工艺装置、应用范围及发展状况的简介,论述了该技术的优越性,提出加强加快超临界CO2萃取技术应用步伐将给我国西部开发及企业发展带来一条低投入。高产出并合乎现代环保要求的高科技之路。  相似文献   

11.
提出了用超临界CO2 萃取枸杞籽油的方法 ,研究了不同萃取压力、温度、流量、颗粒细度和萃取时间对萃取率的影响 .当萃取压力为 2 5~ 30MPa ,温度为 35~ 45℃ ,流量为 40kg/h时 ,萃取 3h ,可将枸杞籽中 90 %以上的油萃取出来 .另对枸杞籽油的成分进行了分析 .  相似文献   

12.
木香薷 (ElsholtziastauntoniiBenth)中提取的精油不仅有芳香气味 ,而且具有抗菌和杀菌作用 ,可以治疗痢疾、肠胃炎、感冒等病症 ,在香精香料工业和医药方面有极大的应用价值 .利用超临界流体CO2 萃取法及毛细管气相色谱仪和色谱 质谱 计算机联用分析仪 ,从木香薷精油中鉴定出 4 7个化合物 .  相似文献   

13.
采用超临界CO2萃取技术提取红景天中的甙元酪醇,通过正交实验优化的萃取条件为:红景天颗粒为细粉、萃取压力20MPa、携带剂乙醇浓度为80%、红景天和乙醇用量之比为1:1.0(M/V)。超临界CO2萃取对甙元酪醇的提取率不高。因此,与其他方法结合才能更有效地发挥出它的优势。  相似文献   

14.
通过溶剂超临界CO2雾化萃取法制得了乙基纤维素微粒.研究了溶液喷口流速、溶液浓度、温度、压力对颗粒粒径及其粒径分布的影响.结果表明,改变工艺参数,可在较大范围内调控微粒大小,所得微粒平均粒径为0.64~10.83μm.随着温度和溶液浓度的增加,颗粒粒径及其粒径分布增加;随着压力和溶液喷口流速的增加,颗粒粒径及其粒径分布减小.  相似文献   

15.
用超临界二氧化碳法提取碰柑叶精油其产品香气纯正,质量好.并对其提取工艺进行了研究,实验结果表明,最佳工艺条件:萃取压力为12~15MPa,温度为40~50℃,萃取时间为1~1.5h,二氧化碳流量为20~30L/h.  相似文献   

16.
以穿心莲内酯中间体为试验原料,考察了超临界CO2萃取穿心莲内酯过程中结晶的特性,并采用高效液相色谱法对结晶产物的纯度测试,同时采用X射线衍射法考察了晶体的晶型变化规律.结果表明:超临界CO2萃取穿心莲内酯同时在结晶板上形成梯度结晶分布;压力越高,晶体的结晶度越高,且晶体定向生长的趋势越强;随着温度的升高,晶体趋向更多晶面生长;浓度越高,衍射峰越杂乱.  相似文献   

17.
用超临界CO2 萃取技术提取重庆江津产青花椒挥发油 ,研究了萃取温度的影响 ,用色谱 -质谱联用仪分析了花椒挥发油化学成分及百分含量 ,共鉴定出 38个化合物 ,占挥发油总量的 98.81% ,其中花椒挥发油的特征有效成分之———哩哪醇含量高达 5 8.79% ,表明用超临界CO2 萃取技术提取重庆江津产青花椒挥发油品质较高。  相似文献   

18.
环氧亚麻油增塑剂合成方法的研究   总被引:1,自引:0,他引:1  
报道了一种以磷酸为催化剂,甲酸、H2O1为原料对亚麻油进行环氧化的新方法。结果表明:用磷酸作催化剂优于树脂,甲酸作过氧化剂优于冰醋酸;反应条件温和,具体操作简便,使反应时间缩短;产物符合环氧亚林油增塑剂标准,环氧值?7.8%,碘值<10。  相似文献   

19.
柑橘精油的超临界CO2萃取实验研究   总被引:13,自引:0,他引:13  
以永春芦柑皮为试验材料,研究了在超临界CO2流体萃取时,原料粒度、投料量、萃取压力、萃取温度、萃取时间和分离温度等因素影响精油得率的规律.通过对精油的感官分析和溶解实验,得出了精油的主要成分.提出了利用精油处理发泡聚苯乙烯塑料的方法.  相似文献   

20.
This paper analyzes the physicochemical properties of supercritical CO2, the characteristic of shale gas and shale gas reservoirs. The technologies of drilling, production, fracturing using the supercritical CO2 in shale gas exploration are proposed, to increase the penetration rate, decrease the damage to formation while fracturing, and enhance the recovery of shale gas. It is believed that the huge economic benefits of shale gas exploration with the supercritical CO2 fluid will be obtained, and it also can initiate a new technology field of CO2 in the petroleum engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号