首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sox9 is required for cartilage formation.   总被引:32,自引:0,他引:32  
  相似文献   

3.
Adult bones have a notable regenerative capacity. Over 40 years ago, an intrinsic activity capable of initiating this reparative response was found to reside within bone itself, and the term bone morphogenetic protein (BMP) was coined to describe the molecules responsible for it. A family of BMP proteins was subsequently identified, but no individual BMP has been shown to be the initiator of the endogenous bone repair response. Here we demonstrate that BMP2 is a necessary component of the signaling cascade that governs fracture repair. Mice lacking the ability to produce BMP2 in their limb bones have spontaneous fractures that do not resolve with time. In fact, in bones lacking BMP2, the earliest steps of fracture healing seem to be blocked. Although other osteogenic stimuli are still present in the limb skeleton of BMP2-deficient mice, they cannot compensate for the absence of BMP2. Collectively, our results identify BMP2 as an endogenous mediator necessary for fracture repair.  相似文献   

4.
In a wide variety of animal species, oocyte maturation is arrested temporarily at prophase of meiosis I (ref. 1). Resumption of meiosis requires activation of cyclin-dependent kinase-1 (CDK1, p34cdc2), one component of maturation-promoting factor (MPF). The dual specificity phosphatases Cdc25a, Cdc25b and Cdc25c are activators of cyclin-dependent kinases; consequently, they are postulated to regulate cell-cycle progression in meiosis and mitosis as well as the DNA-damage response. We generated Cdc25b-deficient (Cdc25b-/-) mice and found that they are viable. As compared with wildtype cells, fibroblasts from Cdc25b-/- mice grew vigorously in culture and arrested normally in response to DNA damage. Female Cdc25b-/- mice were sterile, and Cdc25b-/- oocytes remained arrested at prophase with low MPF activity. Microinjection of wildtype Cdc25b mRNA into Cdc25b-/- oocytes caused activation of MPF and resumption of meiosis. Thus, Cdc25b-/- female mice are sterile because of permanent meiotic arrest resulting from the inability to activate MPF. Cdc25b is therefore essential for meiotic resumption in female mice. Mice lacking Cdc25b provide the first genetic model for studying the mechanisms regulating prophase arrest in vertebrates.  相似文献   

5.
Clustered attacks of epileptic episodes originating from the frontal lobe during sleep are the main symptoms of autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE, MIM 600513). Despite the clinical homogeneity, three forms of ADNFLE have been associated with chromosomes 20 (ENFL1; ref. 1), 15 (ENFL2; ref. 2) and 1 (ENFL3; ref. 3). Mutations of the gene encoding the neuronal nicotinic acetylcholine receptor alpha 4 subunit (CHRNA4 ) have been found in ADNFLE-ENFL1 families, but these mutations account for only a small proportion of ADNFLE cases. The newly identified locus associated with ENFL3 harbours several candidate genes, including CHRNB2 (ref. 8), whose gene product, the beta 2 nicotinic acetylcholine receptor (nAChR) subunit, co-assembles with the alpha 4 nAChR subunit to form the active receptor.  相似文献   

6.
The oral-facial-digital type I (OFD1) syndrome (OMIM 311200) is a human developmental disorder; affected individuals have craniofacial and digital abnormalities and, in 15% of cases, polycystic kidney. The disease is inherited as an X-linked dominant male-lethal trait. Using a Cre-loxP system, we generated knockout animals lacking Ofd1 and reproduced the main features of the disease, albeit with increased severity, possibly owing to differences of X inactivation patterns between human and mouse. We found failure of left-right axis specification in mutant male embryos, and ultrastructural analysis showed a lack of cilia in the embryonic node. Formation of cilia was defective in cystic kidneys from heterozygous females, implicating ciliogenesis as a mechanism underlying cyst development. In addition, we found impaired patterning of the neural tube and altered expression of the 5' Hoxa and Hoxd genes in the limb buds of mice lacking Ofd1, suggesting that Ofd1 could have a role beyond primary cilium organization and assembly.  相似文献   

7.
8.
In mouse and man, deletions of specific regions of the Y chromosome have been linked to early failure of spermatogenesis and consequent sterility; the Y chromosomal gene(s) with this essential early role in spermatogenesis have not been identified. The partial deletion of the mouse Y short arm (the Sxrb deletion) that occurred when Tp(Y)1CtSxr-b (hereafter Sxrb) arose from Tp(Y)1CTSxr-b (hereafter Sxra) defines Spy, a Y chromosomal factor essential for normal spermatogonial proliferation. Molecular analysis has identified six genes that lie within the deletion: Ube1y1 (refs. 4,5), Smcy, Uty, Usp9y (also known as Dffry), Eif2s3y (also known as Eif-2gammay) and Dby10; all have closely similar X-encoded homologs. Of the Y-encoded genes, Ube1y1 and Dby have been considered strong candidates for mouse Spy function, whereas Smcy has been effectively ruled out as a candidate. There is no Ube1y1 homolog in man, and DBY, either alone or in conjunction with USP9Y, is the favored candidate for an early spermatogenic role. Here we show that introduction of Ube1y1 and Dby as transgenes into Sxrb-deletion mice fails to overcome the spermatogenic block. However, the introduction of Eif2s3y restores normal spermatogonial proliferation and progression through meiotic prophase. Therefore, Eif2s3y, which encodes a subunit of the eukaryotic translation initiation factor Eif2, is Spy.  相似文献   

9.
The mismatch repair system is required for S-phase checkpoint activation   总被引:18,自引:0,他引:18  
Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia-telangiectasia, a cancer-prone disorder caused by mutations in ATM. The mismatch repair system principally corrects nucleotide mismatches that arise during replication. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair.  相似文献   

10.
11.
AID is required for germinal center-derived lymphomagenesis   总被引:1,自引:0,他引:1  
Most human B cell non-Hodgkin's lymphomas (B-NHLs) derive from germinal centers (GCs), the structure in which B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR) before being selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant SHM, which arise from mistakes occurring during CSR and SHM. A direct link between these DNA remodeling events and GC lymphoma development, however, has not been demonstrated. Here we have crossed three mouse models of B cell lymphoma driven by oncogenes (Myc, Bcl6 and Myc/Bcl6; refs. 5,6) with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both CSR and SHM. We show that AID deficiency prevents Bcl6-dependent, GC-derived B-NHL, but has no impact on Myc-driven, pre-GC lymphomas. Accordingly, abrogation of AID is associated with the disappearance of CSR- and SHM-mediated structural alterations. These results show that AID is required for GC-derived lymphomagenesis, supporting the notion that errors in AID-mediated antigen-receptor gene modification processes are principal contributors to the pathogenesis of human B-NHL.  相似文献   

12.
Dax1 is required for testis determination   总被引:11,自引:0,他引:11  
The orphan nuclear receptor, Dax1, was originally proposed to act as an 'anti-testis' factor. We find, however, that Nr0b1 (also called Dax1 and Ahch, which encodes Dax1) is in fact required for testis differentiation.  相似文献   

13.
Nrl is required for rod photoreceptor development.   总被引:21,自引:0,他引:21  
  相似文献   

14.
Chfr is required for tumor suppression and Aurora A regulation   总被引:7,自引:0,他引:7  
Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20-50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A.  相似文献   

15.
The tyrosine phosphatase Shp2 is recruited into tyrosine-kinase signalling pathways through binding of its two amino-terminal SH2 domains to specific phosphotyrosine motifs, concurrent with its re-localization and stimulation of phosphatase activity. Shp2 can potentiate signalling through the MAP-kinase pathway and is required during early mouse development for gastrulation. Chimaeric analysis can identify, by study of phenotypically normal embryos, tissues that tolerate mutant cells (and therefore do not require the mutated gene) or lack mutant cells (and presumably require the mutated gene during their developmental history). We therefore generated chimaeric mouse embryos to explore the cellular requirements for Shp2. This analysis revealed an obligatory role for Shp2 during outgrowth of the limb. Shp2 is specifically required in mesenchyme cells of the progress zone (PZ), directly beneath the distal ectoderm of the limb bud. Comparison of Ptpn11 (encoding Shp2)-mutant and Fgfr1 (encoding fibroblast growth factor receptor-1)-mutant chimaeric limbs indicated that in both cases mutant cells fail to contribute to the PZ of phenotypically normal chimaeras, leading to the hypothesis that a signal transduction pathway, initiated by Fgfr1 and acting through Shp2, is essential within PZ cells. Rather than integrating proliferative signals, Shp2 probably exerts its effects on limb development by influencing cell shape, movement or adhesion. Furthermore, the branchial arches, which also use Fgfs during bud outgrowth, similarly require Shp2. Thus, Shp2 regulates phosphotyrosine-signalling events during the complex ectodermal-mesenchymal interactions that regulate mammalian budding morphogenesis.  相似文献   

16.
17.
18.
The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2.  相似文献   

19.
Loss of the de novo DNA methyltransferases Dnmt3a and Dnmt3b in embryonic stem cells obstructs differentiation; however, the role of these enzymes in somatic stem cells is largely unknown. Using conditional ablation, we show that Dnmt3a loss progressively impairs hematopoietic stem cell (HSC) differentiation over serial transplantation, while simultaneously expanding HSC numbers in the bone marrow. Dnmt3a-null HSCs show both increased and decreased methylation at distinct loci, including substantial CpG island hypermethylation. Dnmt3a-null HSCs upregulate HSC multipotency genes and downregulate differentiation factors, and their progeny exhibit global hypomethylation and incomplete repression of HSC-specific genes. These data establish Dnmt3a as a critical participant in the epigenetic silencing of HSC regulatory genes, thereby enabling efficient differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号