首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为解决综放工作面回采期间瓦斯涌出量大、瓦斯抽采导致采空区漏风增加且易发生自然发火的问题,以红庙矿5-2S工作面自然发火和瓦斯抽采综合治理为例,采用现场实测和数值模拟相结合的方法,运用流体计算软件COMSOL对不同抽采量、不同抽采口位置时对氧化升温带影响规律进行研究.研究结果表明:采空区自燃"三带"数值模拟变化规律与现场监测数据相吻合;采空区瓦斯抽采量和抽采口所在位置与采空区自然发火危险性成正相关;5-2S工作面推进速度从3 m/d增加到3.2 m/d,瓦斯极限抽采量由31.71 m~3/h增加到120 m~3/h;距工作面切顶线10~20 m是采空区工作面最佳抽采位置.  相似文献   

2.
针对高抽巷不同抽采能力抽采瓦斯时的瓦斯治理效果和可能诱发的采空区自燃问题,以某矿主采煤层工作面构建采空区气体渗流模型,利用FLUENT数值模拟软件分析了不同抽采能力下的瓦斯治理效果和采空区自燃危险性.结果表明:当高抽巷抽采能力越大时,采空区内瓦斯浓度越低,氧化升温带的宽度越大,自燃危险性越高.依据研究结论,分析得出当高抽巷的抽采能力系数(η)为0.25 ~0.3时,可防止上隅角瓦斯超限、提高瓦斯抽采率和预防采空区自燃,对高瓦斯易自燃煤层高抽巷抽采能力的选择具有一定的指导意义.  相似文献   

3.
回采面上隅角埋管抽放采空区瓦斯数值模拟   总被引:1,自引:0,他引:1  
针对中小型高瓦斯矿井的实际情况,采用数值模拟确定提高瓦斯抽放效率的方案.按照渗流力学的方法将采空区视为连续的渗流空间,采用GAMB IT建立采空区计算几何模型.确定了冒落带的孔隙率和黏性系数.采用FLUENT软件对采空区瓦斯涌出量及埋管抽放瓦斯进行数值模拟,得到了采空区沿工作面走向、倾向和竖向3个不同方向上瓦斯浓度的分布规律,以及埋管抽放采空区瓦斯的最佳参数.模拟结果表明,在抽放管路压力为-100Pa时,抽放管路内和上隅角瓦斯浓度随着抽放位置的变化呈现规律性.当抽放位置距底板垂高2m、沿倾斜方向距回风巷道1m、沿走向深入采空区4m时,瓦斯抽放效果最佳,上隅角瓦斯浓度降至1.1%.上隅角区域采取封堵措施后,上隅角瓦斯浓度降至0.7%.  相似文献   

4.
为了探究高抽巷瓦斯抽采对工作面安全开采的影响,依据401101工作面的巷道布置情况,建立了工作面与采空区的数学物理模型。应用Fluent软件对工作面在有无高抽巷及高抽巷不同抽采能力下采空区的氧浓度以及瓦斯浓度分布规律进行了数值模拟,获得了上隅角瓦斯浓度与采空区氧浓度分布情况。模拟结果与现场实测数据表明:高抽巷能有效解决工作面上隅角瓦斯超限问题;随高抽巷抽采瓦斯能力的增大,上隅角瓦斯浓度不断降低,但采空区氧化升温带的宽度和深度会增加,使得煤自燃危险性和防灭火压力增大;综合考虑防止瓦斯超限及采空区煤自燃,并保证工作面安全开采,高抽巷瓦斯抽采能力以0.25~0.3为宜。  相似文献   

5.
为防止遗煤自燃,结合山西某矿9101工作面实际,在抽采负压分别为0、8、12、160、20、24 k Pa时,利用计算流体力学软件Fluent,进行数值模拟。结果表明:不同抽采负压对采空区的漏风流场分布及采空区的漏风量均有显著影响。在回风侧采空区其受到高抽巷的影响比进风侧采空区大,导致工作面漏风风速在回风侧差别较大;不同抽采负压条件下采空区自燃带宽度均为中部>进风巷侧>回风巷侧。抽采负压为12 k Pa时,采空区自燃带宽度平均值为87 m,为自燃带宽度曲线的"凹点"。12 k Pa为临界点,临界点之前抽采瓦斯纯量增速较快,临界点之后抽采瓦斯纯量增速缓慢。综合考虑高抽巷抽采瓦斯纯量和采空区自燃带宽度,9101工作面高抽巷抽采负压确定为12 k Pa左右。  相似文献   

6.
为研究高瓦斯易自燃煤层采空区漏风规律,运用理论分析及数值模拟相结合的方法,开展不同伪斜长度、有无高位钻孔布置以及不同抽采负压条件下采空区氧浓度分布及漏风速率研究。结果表明:无伪斜工作面的氧浓度减小速率大于有伪斜工作面,有伪斜工作面进风侧漏风速率明显大于回风侧,但中部漏风速率均大于工作面两侧;采空区布置高位钻孔抽采瓦斯时,其回风侧漏风程度明显增大,同时增加了8%~18%氧浓度的分布范围,但对进风巷道内氧浓度的变化规律几乎无影响。增大抽采负压时,采空区漏风流场整体向回风侧加大,采空区漏风流场与抽采负压变化成正比,但整体漏风流场宽度基本保持一致。同时,增大抽采负压对回风侧氧浓度分布范围起到极大的促进作用,其氧化升温带增大12~28 m。研究结果为掌握实际矿井中有无伪斜、不同钻场瓦斯抽采及其不同抽放负压情况下的采空区漏风流场变化规律,及判定自燃危险区域提供了一定的理论依据。  相似文献   

7.
针对高瓦斯易自燃矿井采空区瓦斯与煤自燃共生灾害问题,研究了瓦斯抽采与煤自燃共生灾害特征及致灾机理,采用程序升温实验的方法,分析了漏风量供氧对煤自燃氧化的影响规律,在某矿S1工作面进行了现场监测实验,得出了瓦斯抽采条件下采空区CH_4体积分数、O_2体积分数及温度的影响规律。研究结果表明:随着温度和漏风量的增加,CH_4浓度逐渐增加,O_2浓度逐渐降低,CO的出现温度为110~130℃,在温度大于300℃时解吸量呈现出指数增长趋势;随着采空区深度的增加,CH_4浓度呈现出浅部增加较大深部趋于稳定的趋势,O_2从20.8%逐渐减小到7.7%,温度从22.3℃逐渐升高到24.3℃;划分了瓦斯抽采采空区"三带"分布,工作面散热带宽度为85 m,氧化带为85~210 m,窒息带为210 m以后,其中氧化带宽度增加是非瓦斯抽采采空区的2倍以上。研究成果对瓦斯与煤自燃共生灾害的防治提供理论支撑。  相似文献   

8.
为研究偏"W"型"两进一回"通风方式下瓦斯和氧气浓度分布规律及采空区注氮防灭火技术,建立了偏"W"型通风方式下存有遗留巷道采场的三维物理模型.在将采空区孔隙度设置为非均匀连续分布的条件下,运用Fluent软件对采空区压力场、速度场及瓦斯抽采情况进行了数值模拟,并且模拟分析了不同注氮量不同注氮口位置采空区惰化效果.研究结果表明:工作面两端压差和漏风规律及采空区瓦斯和氧气浓度分布规律与现场实测结果相接近;随着瓦斯抽采强度增大,采空区最高瓦斯浓度减小,氧化带宽度在皮带巷侧有缩小趋势,在轨道巷侧有增大趋势;段王煤矿150405工作面最合适的注氮量约为1 140 m3/h,其最佳注氮位置距工作面40 m左右.  相似文献   

9.
为解决"U"型通风存在的上隅角瓦斯积聚及采空区瓦斯涌出等问题,研究利用大直径钻孔(φ550 mm)抽采采空区瓦斯技术,该技术通过低负压、高流量对采空区瓦斯进行抽采,从本质上改变采空区漏风流流场,从而降低上隅角瓦斯浓度及减少采空区瓦斯涌出.分析了大直径钻孔抽采上隅角瓦斯原理,从钻孔及护管参数、护管施工技术及参数、封孔工艺三方面研究了大直径钻孔抽采技术,并在中能矿2201工作面应用以抽采采空区瓦斯,测试确定了瓦斯钻孔抽采浓度随着工作面与钻孔的距离的变化关系,确定了最佳钻孔间距为20 m,开孔高度1.2 m可将上隅角瓦斯体积分数控制在0.28%~0.79%,钻孔交替时上隅角瓦斯体积分数控制在0.8%之内.  相似文献   

10.
采空区瓦斯抽采与煤自燃防控相互影响,工作面配风量、抽采负压和高抽巷位置等参数影响了采空区自燃危险区域范围。通过在天池矿301工作面采空区内布置监测点并分析气体变化,确定了采空区瓦斯与煤自燃灾害协同防控的关键区域。结合瓦斯抽采和采空区煤自燃的耦合作用机制,采用数值模拟和现场实测方法确定了工作面配风量、高抽巷位置以及推进度等主要关键参数。研究结果表明:当工作面配风量为3 000~3 500 m3/min,推进度为1.39~6.84 m/d,高抽巷与顶板垂距为30 m,与回风巷平距为25 m,抽采负压为14.5~17.5 k Pa时,既能确保抽采效果,也可有效地防止采空区煤自燃。  相似文献   

11.
为研究高抽巷在采空区瓦斯抽采和上隅角瓦斯治理方面的应用,以及探究高抽巷抽采层位对采空区瓦斯分布规律的影响,以李阳煤矿15302综放工作面为研究对象,运用Fluent数值模拟软件对采空区未抽采和不同层位高抽巷抽采时的瓦斯分布进行模拟,通过对比瓦斯抽采浓度和上隅角瓦斯浓度的数据,分析高抽巷在不同层位的瓦斯抽采效果,将模拟结果与现场实际相结合,设计适合的高抽巷抽采层位方案,并用现场实测数据进行验证。结果表明:高抽巷瓦斯抽采浓度随抽采位置距顶板垂直高度的增加而升高,随着距回风巷水平距离的增加先升高后降低,上隅角瓦斯浓度随垂距和平距的增加均先降低后升高;理论最佳抽采层位为垂距30 m,平距32 m,工作面上隅角瓦斯浓度在0.19%以内,设计抽采层位为垂距40 m,平距35 m,工作面上隅角瓦斯浓度维持在0.63%~0.65%.选取合理的高抽巷抽采层位不仅有利于提高瓦斯抽采效果,而且能有效解决上隅角瓦斯超限的问题。  相似文献   

12.
为解决工作面隅角瓦斯超限难题,提出了在外错高抽巷内布置高位钻孔抽采工作面覆岩采动卸压瓦斯方法。针对李雅庄煤矿2-603工作面开采技术条件,建立了高位钻孔围岩结构力学模型,采用理论分析、数值模拟分析及现场实测分析等方法,确定了外错高抽巷内高位钻孔终孔合理位置。首先,覆岩采动裂隙主要分布在上山采动角62°以内,下山采动角65°以内,距离煤层底板13~25 m和38.6~50 m等2个区域,高位钻孔终孔应布置于第二区域内。其次,高位钻孔终孔位于2煤顶板44 m处,采空区内投影长度不小于28 m时,钻孔抽采瓦斯浓度高,且持续抽采时间长。最后,工程应用效果表明,2-603工作面上隅角瓦斯浓度生产班、检修班分别为0.50%~0.95%,0.47%~0.89%,避免了隅角瓦斯超限,保障了工作面安全高效回采。  相似文献   

13.
采空区高位钻孔瓦斯抽放的数值模拟   总被引:2,自引:0,他引:2  
依据Darcy定律,在Navier-Stocks方程的基础上,对祁南煤矿综采工作面采空区瓦斯抽放问题作了计算分析,并进行了CFD数值模拟.从理论上模拟采空区瓦斯聚集过程,直观展示了瓦斯抽采时采空区流态、瓦斯分布变化.把抽放钻孔布置在顶板裂隙内,结合上隅角埋管实施瓦斯抽放,该抽放瓦斯技术起到了对开采工作面上隅角瓦斯的截流作用,现场管路测量显示,可抽出高浓度瓦斯达30%~80%(体积分数),工作面回风瓦斯的体积分数基本控制在0.3%以下.  相似文献   

14.
针对高瓦斯突出煤层工作面上隅角瓦斯易超限的技术难题,以邹庄矿3204工作面为工程背景,利用数值模拟、理论分析、现场实测的研究方法,对采空区埋管及无埋管条件下工作面及采空区瓦斯分布规律进行了研究。结果表明:采空区埋管增加了上隅角瓦斯流动的通道,分流了采空区及工作面涌出的部分瓦斯,降低了上隅角及回风巷瓦斯浓度。据此,提出了采空区埋管为主,高位钻场抽采为辅的采空区瓦斯治理方案,现场实测验证了工作面高位钻场布置层位的合理性。工业性试验表明:采空区埋管为主,高位钻场抽采为辅的采空区瓦斯治理方案对实现采空区瓦斯治理具有积极意义。  相似文献   

15.
为获取走向高抽巷抽采瓦斯的最佳位置,构建走向高抽巷条件下的采空区瓦斯运移模型.通过FLUENT数值模拟软件分析了高抽巷与回风巷不同平距,与煤层顶板不同垂距条件下,抽采瓦斯的效果.数值模拟和现场应用结果表明:高抽巷布置在回风巷附近,与倾向断裂线边界0.46倍带宽(回风巷侧裂隙带);且位于冒落带之上,与其边界垂高2.8倍采高时,效果最好,能有效解决工作面瓦斯超限问题,保证工作面安全回采.  相似文献   

16.
高位钻孔瓦斯抽采参数优化设计   总被引:10,自引:0,他引:10  
基于采空区覆岩裂隙分布规律、覆岩裂隙瓦斯流动规律和高位钻孔抽采技术研究现状,从覆岩"竖三带"、"O"形圈和U型通风条件下采动裂隙瓦斯流动规律出发,找出高位钻孔的理论合理布置区域,指出工作面后方50m范围内覆岩裂隙发育状况是高位钻孔层位设计的关键,针对祁南煤矿32煤层的特点,结合现场采用数值模拟方法模拟不同开采速度条件下覆岩裂隙发育规律,优化设计高位钻孔的抽采参数,在34下2工作面和3410工作面的现场试验中,高位钻孔抽采浓度和抽采率得到大大提高,取得了较好的抽采效果,验证了研究的正确性。  相似文献   

17.
为了防止采空区自然发火,必须了解其发生机理。依据不规则介质采场渗流理论,通过数值模拟和相似材料模拟实验,反映出真实采空区中气体的运移规律,得出采场通风时,工作面两端的压差是造成采空区漏风及遗煤自燃的主要原因。通过对上隅角瓦斯进行合理的抽放,将瓦斯浓度控制在合理的范围内,便可避免为稀释上隅角瓦斯而加大工作面风量所造成的采空区自然发火。  相似文献   

18.
杨军伟  邱燕  任敏杰 《科技信息》2013,(10):48-48,51
本文以贵州某煤矿为例,根据首采工作面的实际情况,对其瓦斯治理技术进行研究,确定先采用顶板穿层钻孔进行预抽,然后在回采时采用本煤层钻孔抽放、上隅角埋管抽放及采空区抽放的瓦斯综合治理技术。该技术能够很好的降低首采面的瓦斯涌出量,保证首采面的安全生产。  相似文献   

19.
为研究低瓦斯高强度开采综放工作面采动覆岩裂隙演化过程中瓦斯的运移规律,提高矿井瓦斯治理能力,以王家岭矿12302工作面为例,研究了煤层开采后上覆岩层的垮落和位移特征,通过分形维数定量描述了裂隙的发育情况,得到了覆岩的三带高度、跨落角、裂隙区等参数,以此参数建立数值模型研究采动裂隙与瓦斯运移的耦合特性,将研究结果应用于现场的卸压瓦斯的抽采设计并进行了效果检验。结果表明:走向模型的冒落带为28.2 m,裂隙带为118.6 m,切眼处和停采线处的垮落角分别为59.5°和51.5°,倾向模型的冒落带为28.2 m,裂隙带为113.6 m,进刀端和停采线处的垮落角分别为62.5°和55.5°;随着工作面开采距离的增加,分形维数先增大后减小最后趋于平稳;采场卸压瓦斯整体上有向上、向采空区深部、向回风巷一侧运移的特性,采空区深部瓦斯浓度可达20%,上隅角瓦斯浓度接近1.5%,采动裂隙带瓦斯聚集区位于距回风巷20~50 m、高度距煤层顶板25~50 m范围内;采用高位定向长钻孔抽采采动裂隙带聚集瓦斯的抽采效果较好,上隅角和回风流瓦斯浓度均小于0.8%,保证了矿井的安全生产,为类似条件下的瓦斯治理提供参考。  相似文献   

20.
回采工作面采空区积聚的大量瓦斯,采煤作业时瓦斯会被漏风或大气压力或通风系统变化使工作面与采空区之间的压力平衡被破坏,将瓦斯带入采煤工作面或生产巷道,影响正常生产,甚至酿成重大事故,所以在采煤作业时需要边采边抽放采空区的瓦斯。目前普遍采取埋管抽放采空区积聚瓦斯的方法边采边抽采空区瓦斯,本文针对埋管抽放瓦斯的管路进行了改进,从而提高抽放效率,节省材料,减少成本投入,加强瓦斯管理,确保安全生产。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号