共查询到19条相似文献,搜索用时 62 毫秒
1.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验.实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率. 相似文献
2.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率. 相似文献
3.
提出了基于断点辨别力的粗糙集离散化算法通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验。实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率 相似文献
4.
提出了基于断点辨别力的粗糙集离散化算法。通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验。实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率。 相似文献
5.
提出了在没有任何领域知识可供借鉴的情况下,基于聚类思想,利用遗传算法对数量型属性进行离散化的新算法——遗传C均值算法.该算法利用遗传算法具有全局寻优的特性,对训练样本根据其每一属性值进行聚类,将样本划分为不同的类,从而为每一属性找到其值的最佳分割点.然后,对不同类赋以不同的编码.该算法的优点是能得到最优的离散化结果.在VC 6.0环境下实现了该算法.仿真实验证明该方法有效解决了利用粗糙集理论进行分类规则挖掘时,数量型属性的离散化问题。 相似文献
6.
一种基于聚类的粗糙集连续属性的离散化算法 总被引:4,自引:0,他引:4
粗糙集理论是一种新的处理不精确、不完全与不相容知识的数学工具。粗糙集理论只能对离散属性进行处理,而不能处理连续属性。中针对这一缺陷,利用连续数值属性有序性的性质和统计方差理论,提出了一种基于聚类的连续属性离散化算法。运用典型数据将本算法与现有方法进行了比较分析,得到了满意的结果。 相似文献
7.
离散化是Rough集理论研究的一个重要内容,目前基于Rough集的离散化算法很难做到高效率和高识别率兼顾.文中分析了基于断点重要性算法和基于属性重要性算法的特点,确定了离散化思路,提出了一种基于Rough集的集成离散化算法.该算法能够有效降低候选断点的数目,快速地实现决策表的离散化.实验结果表明,文中算法保持了与已有算法可比的识别率,且运行效率更高. 相似文献
8.
杨海鹏 《湖南城市学院学报(自然科学版)》2020,29(1):60-64
为提高大数据粗糙集挖掘能力,提出基于信息熵的粗糙集连续属性离散检验算法﹒在云计算环境下进行粗糙集连续属性大数据挖掘,采用特征空间重组方法进行粗糙集连续属性离散数据的模糊特征重构,提取粗糙集连续属性离散数据的信息熵,并得到其分布序列特征;对所提取的信息熵进行聚类分析,采用空间决策树模型,获取离散数据闭繁项关联分析度量;通过数据特征权重的决策树分布特征量化集,得到粗糙集连续属性离散数据空间重组;采用大数据挖掘方法,将离散数据空间重组的信息融合,得到优化的粗糙集和连续属性离散数据检验输出;根据粗糙集连续属性的融合结果,实现离散检验优化﹒仿真结果表明:在迭代次数为400时,收敛程度为0.265%,远远高于其它方法,证明采用该方法进行粗糙集连续属性离散检验的数据聚类性较好﹒ 相似文献
9.
文中给出了基于属性值出现的频率的连续属性离散化的一种方法。在离散化问题描述的基础上,利用属性值出现的频率确定频数候选断点,再利用边缘断点算法进一步减少断点数目,达到离散化目的。该方法提高了决策属性关于条件属性的支持度,提高了属性约简的满意度。 相似文献
10.
连续属性的离散化是粗糙集理论亟待解决的关键问题之一。基于灰色系统和粗糙集的有关理论,提出了
一种新的基于属性重要性的离散化算法。该算法以条件属性对决策属性的灰色关联度来度量条件属性的重要性,
在保证决策表原始分类能力不变的前提下,按照属性重要性由小到大的顺序对每个条件属性的侯选断点进行考
察!将冗余的断点去掉,从而将条件属性离散化。同时给出了该算法的时间复杂度分析,并通过实例分析验证了算
法的有效性和实用性。 相似文献
11.
基于可变精度粗集模型的增量式规则获取算法 总被引:1,自引:0,他引:1
为了获取最小决策规则集,当增加新样本时,传统的方法通常需要对决策表中所有数据重新计算,效率欠
佳.从可变精度粗集模型理论出发,讨论了新增记录与已有条件属性等价类的关系及对规则集的影响,在此基础
上提出了基于可变精度粗集模型的增量式规则获取算法.通过仿真实验表明,这种增量式算法是可行的. 相似文献
12.
基于可变精度粗集模型的增量式规则获取算法 总被引:4,自引:0,他引:4
为了获取最小决策规则集,当增加新样本时,传统的方法通常需要对决策表中所有数据重新计算,效率欠佳。从可变精度粗集模型理论出发,讨论了新增记录与已有条件属性等价类的关系及对规则集的影响,在此基础上提出了基于可变精度粗集模型的增量式规则获取算法。通过仿真实验表明,这种增量式算法是可行的。 相似文献
13.
基于熵和变精度粗糙集的规则不确定性量度 总被引:21,自引:0,他引:21
由已知数据中产生的粗糙决策规则往往具有不确定性 ,需要适当的不确定性量度。借鉴变精度粗糙集理论的思想 ,采用基于信息熵的方法构造了两个新的粗糙决策规则不确定性量度函数。它们不仅可以兼顾由划分的粒度引起的规则不确定性的两个方面 ,即不一致性和随机性 ,还考虑了数据中的噪声对规则一致性的影响。因此 ,它们对一类“几乎一致性规则”具有一定的保护作用。通过举例分析 ,说明它们更适于评价从有噪声数据中提取的粗糙决策规则。 相似文献
14.
在变精度粗糙集模型的基础上,通过定义近似分类质量来对条件属性进行选择,在ID3算法的基础上生成决策树,实现了对ID3算法的改进,使分类速度加快,并且有效地解决了含噪数据的分类问题。 相似文献
15.
一般关系下的变精度粗糙集模型 总被引:13,自引:1,他引:13
通过分析一般关系下基本粗糙集模型的不足,定义了一般关系下的多数包含关系,借助引入的误差参数α(0≤α<1/2),给出了一般关系下的变精度粗糙集模型.在该模型中,当α=0时,退化为一般关系下的基本粗糙集模型(Z.Pawlak模型);当|Rs(x)|·α=k时(|Rs(x)|表示元素x后继邻域Rs(x)之基数,k为非负整数),退化为常见的程度粗糙集模型.通过它与一般关系下基本粗糙集模型(Z.Pawlak模型)的比较,可以看出,在引入误差参数α后,能够使尽可能多的有用信息被提取、挖掘.从而克服了基本粗糙集模型中由于要求绝对精确的包含关系而使大量有用信息丢失的现象,并讨论了所给模型的一些性质.最后,在所给模型基础上讨论了一种广义近似空间中集合的相对可辨性、近似依赖和属性约简. 相似文献
16.
基于邻域的变精度覆盖粗糙集模型中,β上,下覆盖近似算子的交不保持交运算。通过定义一对新的覆盖边界上,下算子,并讨论了它们的性质。应用新定义的算子,能够将覆盖上下近似算子交运算的不等式变成等式,防止了信息的丢失。 相似文献
17.
针对现有神经模糊网络应用中的不足,提出了一种新的基于变精度粗糙集的神经模糊网络优化方法,并讨论了其在复杂系统建模中的应用.将变精度粗糙集理论中的β分类精度作为信息函数,选择条件属性.通过选择适当的精度,对建模数据进行离散化,组成决策表.通过对决策表进行变精度的知识约简,提取重要的属性和属性值,映射到模糊规则中,简化生成的规则,从而有效地优化了神经模糊网络结构,极大地减少了网络的训练时间,且提高了训练精度.将该方法应用于有大量样本数据的非线性时延系统建模,仿真实例验证了此种方法的可行性和有效性. 相似文献
18.
基于遗传算法和粗糙集理论的增量式规则获取方法 总被引:1,自引:0,他引:1
何明 《西安石油大学学报(自然科学版)》2008,23(4)
规则获取的增量式算法是数据挖掘领域的一个热点问题.基于粗糙集理论,从规则获取和优化两方面研究了基于遗传算法的增量式规则挖掘方法,它具有结构简单、搜索效率高、求解速度快等优点.通过研究决策表和决策规则系数,建立基于粗糙集表示和度量的知识,并且将遗传算法和规则挖掘算法相结合,建立了新的优化方法,提出了一种基于遗传算法的增量式规则挖掘的方法.在原有规则集的基础上进行规则和规则参数的增量式更新,避免了为更新规则而重新运行规则获取算法.试验结果表明,执行增量式GA的能够有效地获取最优规则. 相似文献
19.
Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can't get the right result. 相似文献