首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验.实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率.  相似文献   

2.
提出了基于断点辨别力的粗糙集离散化算法.通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化.离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息.采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率.  相似文献   

3.
提出了基于断点辨别力的粗糙集离散化算法。通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对此算法的性能进行了检验,并与其他算法做了对比实验。实验结果表明此算法是有效的,而且当候选断点个数增多时仍有较高的计算效率。  相似文献   

4.
提出了基于断点辨别力的粗糙集离散化算法通过分析候选断点与决策类之间的相关性,定义了候选断点对决策类的辨别力,并以此作为断点重要性的度量,实现连续属性的离散化。离散化后的决策系统不改变原有的相容性,而且能最大限度地保留有用信息。采用多组数据对该算法的性能进行了检验,并与其它算法做了对比实验。实验结果表明该算法是有效的,而且当候选断点个数增多时仍具有较高的计算效率  相似文献   

5.
提出了在没有任何领域知识可供借鉴的情况下,基于聚类思想,利用遗传算法对数量型属性进行离散化的新算法——遗传C均值算法.该算法利用遗传算法具有全局寻优的特性,对训练样本根据其每一属性值进行聚类,将样本划分为不同的类,从而为每一属性找到其值的最佳分割点.然后,对不同类赋以不同的编码.该算法的优点是能得到最优的离散化结果.在VC 6.0环境下实现了该算法.仿真实验证明该方法有效解决了利用粗糙集理论进行分类规则挖掘时,数量型属性的离散化问题。  相似文献   

6.
一种基于聚类的粗糙集连续属性的离散化算法   总被引:4,自引:0,他引:4  
粗糙集理论是一种新的处理不精确、不完全与不相容知识的数学工具。粗糙集理论只能对离散属性进行处理,而不能处理连续属性。中针对这一缺陷,利用连续数值属性有序性的性质和统计方差理论,提出了一种基于聚类的连续属性离散化算法。运用典型数据将本算法与现有方法进行了比较分析,得到了满意的结果。  相似文献   

7.
离散化是Rough集理论研究的一个重要内容,目前基于Rough集的离散化算法很难做到高效率和高识别率兼顾.文中分析了基于断点重要性算法和基于属性重要性算法的特点,确定了离散化思路,提出了一种基于Rough集的集成离散化算法.该算法能够有效降低候选断点的数目,快速地实现决策表的离散化.实验结果表明,文中算法保持了与已有算法可比的识别率,且运行效率更高.  相似文献   

8.
为提高大数据粗糙集挖掘能力,提出基于信息熵的粗糙集连续属性离散检验算法﹒在云计算环境下进行粗糙集连续属性大数据挖掘,采用特征空间重组方法进行粗糙集连续属性离散数据的模糊特征重构,提取粗糙集连续属性离散数据的信息熵,并得到其分布序列特征;对所提取的信息熵进行聚类分析,采用空间决策树模型,获取离散数据闭繁项关联分析度量;通...  相似文献   

9.
文中给出了基于属性值出现的频率的连续属性离散化的一种方法。在离散化问题描述的基础上,利用属性值出现的频率确定频数候选断点,再利用边缘断点算法进一步减少断点数目,达到离散化目的。该方法提高了决策属性关于条件属性的支持度,提高了属性约简的满意度。  相似文献   

10.
变精度粗糙集模型   总被引:1,自引:0,他引:1  
针对基本RS模型的不足,介绍了变精度粗糙集模型,并讨论了它与基本RS模型的关系。最后,定义了变精度粗糙集模型上的属性近似依赖、近似约简。  相似文献   

11.
为应对层出不穷的新型网络入侵,提高对未知恶意行为的检测正确率,运用粗糙集理论对入侵检测问题进行建模.先用概率粗糙集建立入侵检测模型PRS-IDM,在此基础上生成基于变精度粗糙集的检测模型VRS-IDM和其中的阈值参数β.在VRS-IDM模型基础上对检测训练集数据进行约简并构造检测规则.模拟检测实验的结果证明本方法具有良好的检测正确率,同时能有效应付未知的潜在入侵行为.  相似文献   

12.
为解决连续属性无法直接用于粗糙集理论中这一问题,将Parzen窗方法和遗传算法相结合,提出了一种全新的属性离散化方法。该方法首先选取较多个断点将连续属性分为较多类,然后结合粗糙集理论的一致性要求和Parzen窗所反映的离散结果稳定性指标定义遗传算法的适值函数。仿真结果表明:使用该方法得到的离散结果能得到较少个断点,并且保持数据原有的分类能力。  相似文献   

13.
提出一种基于变精度粗糙-模糊集模型的诊断知识获取算法,利用相似性聚类方法自动获取模糊隶属函数,将连续属性表示成模糊值,通过定义模糊相似关系和模糊相似类给出了变精度粗糙-模糊模型的近似表示,并引入蚁群算法求取模糊相似关系下的属性约简,进行诊断知识的获取。将其应用于精对苯二甲酸生产过程尾氧浓度故障诊断知识获取中,结果表明:该算法可以从故障数据中提取更客观有效的诊断规则,在实际故障诊断中具有很好的应用价值。  相似文献   

14.
基于熵和变精度粗糙集的规则不确定性量度   总被引:21,自引:0,他引:21  
由已知数据中产生的粗糙决策规则往往具有不确定性 ,需要适当的不确定性量度。借鉴变精度粗糙集理论的思想 ,采用基于信息熵的方法构造了两个新的粗糙决策规则不确定性量度函数。它们不仅可以兼顾由划分的粒度引起的规则不确定性的两个方面 ,即不一致性和随机性 ,还考虑了数据中的噪声对规则一致性的影响。因此 ,它们对一类“几乎一致性规则”具有一定的保护作用。通过举例分析 ,说明它们更适于评价从有噪声数据中提取的粗糙决策规则。  相似文献   

15.
机器学习是人工智能领域中重要的研究课题,基于经典粗糙集的机器学习,只有学习者的分类被完全包含在导师的分类中时,才形成决策规则,条件比较苛刻;而基于可变精度粗糙集理论的有导师机器学习,根据学习者的分类包含在导师的分类中的包含度αi,与事先给定的精度系数β的比较,来求取具有一定相容性的决策规则,该方法更具有灵活和实用性。  相似文献   

16.
基于可变精度粗集模型的增量式规则获取算法   总被引:4,自引:0,他引:4  
为了获取最小决策规则集,当增加新样本时,传统的方法通常需要对决策表中所有数据重新计算,效率欠佳。从可变精度粗集模型理论出发,讨论了新增记录与已有条件属性等价类的关系及对规则集的影响,在此基础上提出了基于可变精度粗集模型的增量式规则获取算法。通过仿真实验表明,这种增量式算法是可行的。  相似文献   

17.
一般关系下的变精度粗糙集模型   总被引:13,自引:1,他引:13  
通过分析一般关系下基本粗糙集模型的不足,定义了一般关系下的多数包含关系,借助引入的误差参数α(0≤α<1/2),给出了一般关系下的变精度粗糙集模型.在该模型中,当α=0时,退化为一般关系下的基本粗糙集模型(Z.Pawlak模型);当|Rs(x)|·α=k时(|Rs(x)|表示元素x后继邻域Rs(x)之基数,k为非负整数),退化为常见的程度粗糙集模型.通过它与一般关系下基本粗糙集模型(Z.Pawlak模型)的比较,可以看出,在引入误差参数α后,能够使尽可能多的有用信息被提取、挖掘.从而克服了基本粗糙集模型中由于要求绝对精确的包含关系而使大量有用信息丢失的现象,并讨论了所给模型的一些性质.最后,在所给模型基础上讨论了一种广义近似空间中集合的相对可辨性、近似依赖和属性约简.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号