首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
《矿物冶金与材料学报》2021,28(12):2001-2007
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integrating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and regenerability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the adsorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% adsorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.  相似文献   

2.
《矿物冶金与材料学报》2021,28(12):1908-1916
The effect of CaCO3, Na2CO3, and CaF2 on the reduction roasting and magnetic separation of high-phosphorus iron ore containing phosphorus in the form of Fe3PO7 and apatite was investigated. The results revealed that Na2CO3 had the most significant effect on iron recovery and dephosphorization, followed by CaCO3, the effect of CaF2 was negligible. The mechanisms of CaCO3, Na2CO3, and CaF2 were investigated using X-ray diffraction (XRD), scanning electron microscopy and energy dispersive spectrometry (SEM–EDS). Without additives, Fe3PO7 was reduced to elemental phosphorus and formed an iron–phosphorus alloy with metallic iron. The addition of CaCO3 reacted with Fe3PO7 to generate an enormous amount of Ca3(PO4)2 and promoted the reduction of iron oxides. However, the growth of iron particles was inhibited. With the addition of Na2CO3, the phosphorus in Fe3PO7 migrated to nepheline and Na2CO3 improved the reduction of iron oxides and growth of iron particles. Therefore, the recovery of iron and the separation of iron and phosphorus were the best. In contrast, CaF2 reacted with Fe3PO7 to form fine Ca3(PO4)2 particles scattered around the iron particles, making the separation of iron and phosphorus difficult.  相似文献   

3.
4.
Carbonated decomposition of hydrogarnet is one of the vital reactions of the calcification–carbonation method, which is designed to dispose of low-grade bauxite and Bayer red mud and is a novel eco-friendly method. In this study, the effect of the silica saturation coefficient (x) on the carbonation of hydrogarnet was investigated from the kinetic perspective. The results indicated that the carbonation of hydrogarnets with different x values (x = 0.27, 0.36, 0.70, and 0.73) underwent two stages with significantly different rates, and the kinetic mechanisms of the two stages can be described by the kinetic functions R3 and D3. The apparent activation energies at Stages 1 and 2 were 41.96–81.64 and 14.80–34.84 kJ/mol, respectively. Moreover, the corresponding limiting steps of the two stages were interfacial chemical reaction and diffusion.  相似文献   

5.
《矿物冶金与材料学报》2020,27(10):1347-1352
A new method of high-gravity combustion synthesis (HGCS) followed by post-treatment (PT) is reported for preparing high-performance high-entropy alloys (HEAs), Cr0.9FeNi2.5V0.2Al0.5 alloy, whereby cheap thermite powder is used as the raw material. In this process, the HEA melt and the ceramic melt are rapidly formed by a strong exothermic combustion synthesis reaction and completely separated under a high-gravity field. Then, the master alloy is obtained after cooling. Subsequently, the master alloy is sequentially subjected to conventional vacuum arc melting (VAM), homogenization treatment, cold rolling, and annealing treatment to realize a tensile strength, yield strength, and elongation of 1250 MPa, 1075 MPa, and 2.9%, respectively. The present method is increasingly attractive due to its low cost of raw materials and the intermediate product obtained without high-temperature heating. Based on the calculation of phase separation kinetics in the high-temperature melt, it is expected that the final alloys with high performance can be prepared directly across master alloys with higher high-gravity coefficients.  相似文献   

6.
Computational simulations and high-temperature measurements of velocities near the surface of a mold were carried out by using the rod deflection method to study the effects of various operating parameters on the flow field in slab continuous casting (CC) molds with narrow widths for the production of automobile exposed panels. Reasonable agreement between the calculated results and measured subsurface velocities of liquid steel was obtained under different operating parameters of the CC process. The simulation results reveal that the flow field in the horizontal plane located 50 mm from the meniscus can be used as the characteristic flow field to optimize the flow field of molten steel in the mold. Increases in casting speed can increase the subsurface velocity of molten steel and shift the position of the vortex core downward in the downward circulation zone. The flow field of liquid steel in a 1040 mm-wide slab CC mold can be improved by an Ar gas flow rate of 7 L·min?1 and casting speed of 1.7 m·min?1. Under the present experimental conditions, the double-roll flow pattern is generally stable at a submerged entry nozzle immersion depth of 170 mm.  相似文献   

7.
Electroslag remelting (ESR) gives a combination of liquid metal refining and solidification structure control. One of the typical aspects of liquid metal refining during ESR for the advanced steel and alloy production is desulfurization. It involves two patterns, i.e., slag–metal reaction and gas–slag reaction (gasifying desulfurization). In this paper, the advances in desulfurization practices of ESR are reviewed. The effects of processing parameters, including the initial sulfur level of consumable electrode, remelting atmosphere, deoxidation schemes of ESR, slag composition, melting rate, and electrical parameters on the desulfurization in ESR are assessed. The interrelation between desulfurization and sulfide inclusion evolution during ESR is discussed, and advancements in the production of sulfur-bearing steel at a high-sulfur level during ESR are described. The remaining challenges for future work are also proposed.  相似文献   

8.
We report the picosecond laser ablation of aluminum targets immersed in a polar organic liquid (chloroform, CHCl3) with ~2 ps laser pulses at an input energy of ~350 μJ. The synthesized aluminum nanoparticles exhibited a surface plasmon resonance peak at ~340 nm. Scanning electron microscopy images of Al nanoparticles demonstrated the spherical morphology with an average size of (27 ± 3.6) nm. The formation of smaller spherical Al nanoparticles and the diminished growth could be from the formation of electric double layers on the Al nanoparticles. In addition to spherical aluminum nanoparticles, triangular/pentagonal/hexagonal nanoparticles were also observed in the colloidal solution. Field emission scanning electron microscopy images of ablated Al targets demonstrated laser induced periodic surface structures (LIPSSs), which were the high spatial frequency LIPSSs (HSF-LIPSSs) since their grating period was ~280 nm. Additionally, coarse structures with a period of ~700 nm were observed.  相似文献   

9.
The mineral transition and formation mechanism of calcium aluminate compounds in CaO?Al2O3?Na2O system during the high-temperature sintering process were systematically investigated using DSC?TG, XRD, SEM?EDS, FTIR, and Raman spectra, and the crystal structure of Na4Ca3(AlO2)10 was also simulated by Material Studio software. The results indicated that the minerals formed during the sintering process included Na4Ca3(AlO2)10, CaO·Al2O3, and 12CaO·7Al2O3, and the content of Na4Ca3(AlO2)10 could reach 92wt% when sintered at 1200°C for 30 min. The main formation stage of Na4Ca3(AlO2)10 occurred at temperatures from 970 to 1100°C, and the content could reach 82wt% when the reaction temperature increased to 1100°C. The crystal system of Na4Ca3(AlO2)10 was tetragonal, and the cells preferred to grow along crystal planes (110) and (210). The formation of Na4Ca3(AlO2)10 was an exothermic reaction that followed a secondary reaction model, and its activation energy was 223.97 kJ/mol.  相似文献   

10.
Ore particles, especially fine interlayers, commonly segregate in heap stacking, leading to undesirable flow paths and changeable flow velocity fields of packed beds. Computed tomography (CT), COMSOL Multiphysics, and MATLAB were utilized to quantify pore structures and visualize flow behavior inside packed beds with segregated fine interlayers. The formation of fine interlayers was accompanied with the segregation of particles in packed beds. Fine particles reached the upper position of the packed beds during stacking. CT revealed that the average porosity of fine interlayers (24.21%) was significantly lower than that of the heap packed by coarse ores (37.42%), which directly affected the formation of flow paths. Specifically, the potential flow paths in the internal regions of fine interlayers were undeveloped. Fluid flowed and bypassed the fine interlayers and along the sides of the packed beds. Flow velocity also indicated that the flow paths easily gathered in the pore throat where flow velocity (1.8 × 10?5 m/s) suddenly increased. Fluid stagnant regions with a flow velocity lower than 0.2 × 10?5 m/s appeared in flow paths with a large diameter.  相似文献   

11.
研究菊苣酸脂质体的最佳制备工艺。采用薄膜分散-超声法制备菊苣酸脂质体,以包封率为评价指标,采用Box-Behnken design响应面优化法优化制备工艺参数。结果显示最佳制备工艺为:磷脂与胆固醇的质量比为4.20:1,磷脂与药物的质量比为11.44:1,超声时间为6.54 min,采用最优工艺制备的脂质体包封率为75.18%。采用Box Behnken design响应面法优选出了最佳制备工艺,所得工艺合理可行。  相似文献   

12.
选择具有最低频率的最优种子是一个复杂的计算问题,往往需要很长时间.提出了一种read的基于频率的合并种子选择算法(FMSS),该算法能够高效地选择接近最优的种子集合,可用于改善现有映射工具的性能.实验对比了平均种子选择方法和当前最优的种子选择策略(OSS,optimal seed solver),结果显示FMSS算法能够用很少的时间代价给出接近OSS的最优种子集合,这表明FMSS算法可集成到现有映射工具中用于处理更大规模的read mapping问题.  相似文献   

13.
研究了确定型需求条件下单一供应商和2个制造商组成的二级供应链,其中下游的一个制造商为供应商提供产能投资,并参与供应商利润分成.研究了不同决策方式下多阶段博弈的最优决策,通过数值分析讨论了需求弹性系数和融资成本系数对于联盟决策以及各方的收益的影响,具有一定的实际参考价值.  相似文献   

14.
以带缝隙引流叶片的低比转速离心泵叶轮为研究对象, 研究了缝隙引流叶片的位置对低比转速离心泵水力性能的影响. 基于叶片参数化设计、网格划分、CFD(computational fluid dynamics)计算和后处理过程全自动集成的优化平台, 以离心泵叶轮水力效率最大化为目标函数, 采用实验设计法(design of experiments, DOE)和序列二次规划法(sequential quadratic programming, SQP)组合策略进行优化设计. 将优化后得到的新叶轮和原始叶轮进行对比分析发现, 优化后泵流道内堵塞情况减少, 扬程提高, 0.6Q 工况以后优化叶轮的效率比原始叶轮高, 同时最高点效率提高了2% 以上. 研究结果表明, 该设计方法切实可行.  相似文献   

15.
设计了一种采暖系统和一种结构合理的风道结构,达到了改善乘员舱热环境的目的.对采暖系统的结构参数进行优化设计,针对出风口倒角半径、风道轴线与X轴角度、出风口高度、回风口形式等四个因素,根据正交试验理论,确定出最优化设计方案,即出风口倒角半径为60mm,风道轴线与X轴之间的夹角为110°,出风口高度为570mm,回风口形式为Z-6-280×5.对最优化设计方案进行CFD数值模拟,同时监测驾驶员、乘员1和乘员2头部及脚部温度值,说明最优化设计方案的采暖系统对改善驾驶员、乘员1和乘员2乘坐热感觉起到了明显的作用.  相似文献   

16.
研究报童模型双周期下决策者面临服务水平的机会约束时,所做出的最优决策.通过构建模型,分析了该模型的最优订货决策和最优目标函数的解析解.在数值分析中,对模型中的参数做了相应的灵敏度分析.最后,将该模型和文献中的单周期带服务水平约束的报童模型进行了对比.分析了在2种不同的模型下,参数变化给模型的目标值和最优解带来的影响.  相似文献   

17.
CO_2吞吐开发低渗透油藏具有投资少、见效快、见效时间长等优点,在开发复杂低渗断块油藏方面,其效果可与压裂法相媲美。影响CO_2吞吐采油效果的因素复杂,焖井时间就是其中一个重要参数。为此,针对室内实验存在最佳焖井时间这一现象,从CO_2移动前缘和开井生产时压力波传播前缘的相对位置关系分析了室内存在最佳焖井时间的原因;即CO_2移动前缘和开井生产时压力波传播前缘的相对位置不同,导致最终采收率及周期换油率不同,从而确定了最佳焖井时间。最佳焖井时间的确定对于提高低渗油藏开发效果具有重要作用。  相似文献   

18.
为分析S-LCC型拓扑结构的无线电能传输系统中补偿网络参数对于传输特性的影响,首先利用双线圈等效电路模型建立回路电路方程并推导出系统输出功率表达式,其次在不同参数条件下讨论系统的恒流恒压特性,确定以最优输出功率为目标的补偿网络参数之间的相互关系,分析负载电阻与谐振电感以及寄生电阻对于系统输出功率的影响,并搭建双线圈WPT实物系统。研究结果表明:可精准确定以最优输出功率为目标的原副边侧谐振电容关系;系统的输出功率随负载电阻的增加而表现出先增加后减少或者先增加后减少再增加又减少的趋势;最佳负载电阻随着谐振电容的减少而先减少后增加,随着谐振电感的减少而先减少后增加,随着寄生电阻的增加而增加。  相似文献   

19.
 以羟丙基-β-环糊精、甲基-β-环糊精为手性固定相,氧化多壁碳纳米管为拆分辅助吸附添加剂,采用薄层色谱法拆分了盐酸普萘洛尔对映体。优化得到了最佳展开剂条件,并对展开剂中是否添加冰醋酸进行了比较。当以羟丙基-β-环糊精/氧化多壁碳纳米管为固定相制备薄层色谱板,用于拆分盐酸普萘洛尔时,最佳的展开剂条件为:乙腈/异丁醇(体积比为9:1)混合溶剂中添加体积分数为2%的冰醋酸。当以甲基-β-环糊精/氧化多壁碳纳米管为固定相制备薄层色谱板,用于拆分盐酸普萘洛尔时,最佳的展开剂条件为:乙腈/正丁醇(体积比为1:1)混合溶剂中添加体积分数为2%的冰醋酸。  相似文献   

20.
考虑量子信道对多体纠缠鲁棒性的影响. 先根据可分态之集为一个凸闭集, 证明可以取到纠缠鲁棒性定义中的下确界, 再证明同一纠缠态ρ的两个最优态的凸组合仍是最优态, 纠缠鲁棒性作为定义态集合上函数是下半连续的; 最后, 分别给出一个量子信道不增加、 不减少[KG*8]及保持所有量子态的纠缠鲁棒性的充分必
要条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号