首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The selection of novel proteins or enzymes from random protein libraries has come to be a major objective in current biology, and these enzymes should prove useful in various biological and biomedical fields. New technologies such as in vitro selection of proteins in cell-free systems have high potential to realize evolu tionary molecular engineering of proteins. This review highlights an application of insertional mutagenesis of proteins to evolutionary molecular engineering. Random sequence proteins are inserted into the surface of a host enzyme which serves as a scaffold to display random protein libraries. Constraints on random polypeptide conformations owing to the proximity of N- and C-termini on the scaffold would result in greater screening efficiency of libraries. The scaffold enzyme is also used as a probe for monitoring the hill climbing of random sequence proteins on a fitness landscape and navigating rapid protein folding in the sequence space. Received 9 October 1997; received after revision 6 January 1998; accepted 19 January 1998  相似文献   

2.
噬菌体作为细菌病毒,在细菌性感染尤其是多重耐药菌感染的治疗方面具有抗生素无法比拟的优势。目前人工改造噬菌体的理论和技术已趋成熟,研究者通过基因工程技术解决了噬菌体特异性高、半衰期短、释放内毒素等问题,使基因工程改造噬菌体具有了较强的临床应用潜力。本文主要就基因工程改造噬菌体在扩大宿主范围、增强抗生素疗效、延缓免疫清除、避免内毒素释放等方面所具有的优势,及其在剂量确定、细菌耐受、宿主安全性等方面可能会出现的问题进行了阐述。  相似文献   

3.
The exotic or non-indigenous species model for deliberately introduced genetically engineered organisms (GEOs) has often been misunderstood or misrepresented. Yet proper comparisons of ecologically competent GEOs to the patterns of adaptation of introduced species have been highly useful among scientists in attempting to determine how to apply biological theory to specific GEO risk issues, and in attempting to define the probabilities and scale of ecological risks with GEOs. In truth, the model predicts that most projects may be environmentallysafe, but a significant minority may be very risky.The model includes a history of institutional follies that also should remind workers of the danger of oversimplifying biological issues, and warn against repeating the sorts of professional misjudgments that have too often been made in introducing organisms to new settings.We once expected that the non-indigenous species model would be refined by more analysis of species eruptions, ecological genetics, and the biology of select GEOs themselves, as outlined. But there has been political resistance to the effective regulation of GEOs, and a bureaucratic tendency to focus research agendas on narrow data collection. Thus there has been too little promotion by responsible agencies of studies to provide the broad conceptual base for truly science-based regulation. In its presently unrefined state, the non-indigenous species comparison would overestimate the risks of GEOs if it were (mis) applied to genetically disrupted, ecologically crippled GEOs, but in some cases of wild-type organisms with novel engineered traits, it could greatly underestimate the risks. Further analysis is urgently needed.  相似文献   

4.
Tissue hypoxia results in rapid angiogenesis in vivo, triggered by angiogenic proteins, including vascular endothelial growth factor (VEGF). Current views of tissue viability are founded on whether ‘deeper-lying’ cells receive sufficient nutrients and oxygen for normal activity and ultimately survival. For intact tissues, levels of such essential nutrients are governed by micro-vascular perfusion. However, there have been few effective quantitatively defined 3D models, which enable testing of the interplay or interdependence of matrix and cell density, and path diffusion on oxygen consumption in vitro. As a result, concepts on cell vulnerability to low oxygen levels, together with the nature of cellular responses are ill defined. The present study has adapted a novel, optical fibre-based system for in situ, real-time oxygen monitoring within three-dimensionally-spiralled cellular collagen constructs, which were then unfurled to enable quantitative, spatial measurements of VEGF production in different parts of the same construct exposed to different oxygen levels. A VEGF response was elicited by cells exposed to low oxygen levels (20 mmHg), primarily within the construct core. Received 3 August 2007; received after revision 24 October 2007; accepted 29 October 2007 An erratum to this article is available at .  相似文献   

5.
Affinity capillary electrophoresis is a new method for studies of biomolecular recognition. Applications reported in the literature include chiral separation of racemic biomolecules, measurement of binding constants, estimation of kinetic on- and off-rate constants, determination of binding stoichiometries (a useful tool in examining electrostatic interactions), estimation of effective charges and molecular weights of proteins, characterization of enzymatic activities and library screening for tight-binding drug candidates in solution. This technique demands only small amounts of sample (nanolitre injection volumes, picograms of proteins), involves no radiolabelled materials or chemically immobilized ligands, and does not require changes in spectroscopic characteristics upon binding. This paper reviews the most recent applications of affinity capillary electrophoresis and its use in the analysis of biomolecules. Received 9 January 1998; received after revision 27 February 1998; accepted 3 March 1998  相似文献   

6.
7.
This review discusses the state-of-the-art in molecular research on the most prominent and widely applied lantibiotic, i.e., nisin. The developments in understanding its complex biosynthesis and mode of action are highlighted. Moreover, novel applications arising from engineering either nisin itself, or from the construction of totally novel dehydrated and/or lanthionine-containing peptides with desired bioactivities are described. Several challenges still exist in understanding the immunity system and the unique multiple reactions occurring on a single substrate molecule, carried out by the dehydratase NisB and the cyclization enzyme NisC. The recent elucidation of the 3-D structure of NisC forms the exciting beginning of further 3-D-structure determinations of the other biosynthetic enzymes, transporters and immunity proteins. Advances in achieving in vitro activities of lanthionine-forming enzymes will greatly enhance our understanding of the molecular characteristics of the biosynthesis process, opening up new avenues for developing unique and novel biocatalytic processes. Received 9 April 2007; received after revision 31 August 2007; accepted 28 September 2007  相似文献   

8.
Type II restriction endonucleases are components of restriction modification systems that protect bacteria and archaea against invading foreign DNA. Most are homodimeric or tetrameric enzymes that cleave DNA at defined sites of 4–8 bp in length and require Mg2+ ions for catalysis. They differ in the details of the recognition process and the mode of cleavage, indicators that these enzymes are more diverse than originally thought. Still, most of them have a similar structural core and seem to share a common mechanism of DNA cleavage, suggesting that they evolved from a common ancestor. Only a few restriction endonucleases discovered thus far do not belong to the PD...D/ExK family of enzymes, but rather have active sites typical of other endonuclease families. The present review deals with new developments in the field of Type II restriction endonucleases. One of the more interesting aspects is the increasing awareness of the diversity of Type II restriction enzymes. Nevertheless, structural studies summarized herein deal with the more common subtypes. A major emphasis of this review will be on target site location and the mechanism of catalysis, two problems currently being addressed in the literature.Received 15 November 2004; accepted 9 December 2004  相似文献   

9.
Protein folding is an extremely active field of research where biology, chemistry, computer science and physics meet. Although the study of protein-folding intermediates in general and equilibrium intermediates in particular has grown considerably in recent years, many questions regarding the conformational state and the structural features of the various partially folded intermediate states remain unanswered. Performing kinetic measurements on proteins that have had their structures modified by site-directed mutagenesis, the so-called protein-engineering method, is an obvious way to gain fine structural information. In the present review, this method has been applied to a variety of proteins belonging to the lysozyme/α-lactalbumin family. Besides recombinants obtained by point mutations of individual critical residues, chimeric proteins in which whole structural elements (10 – 25 residues) from α-lactalbumin were inserted into a human lysozyme matrix are examined. The conformational properties of the equilibrium intermediate states are discussed together with the structural characterization of the partially unfolded states encountered in the kinetic folding pathway. Received 28 May 1998; received after revision 6 July 1998; accepted 6 July 1998  相似文献   

10.
11.
目的 探讨P16及COX-2蛋白在宫颈癌中表达及意义.方法 收集宫颈活检或手术标本138例,采用免疫组织化学方法分别检测P16及COX-2蛋白的表达,并分析结果.结果 正常宫颈组织、宫颈低级别上皮内瘤变(LSIL)、宫颈高级别上皮内瘤变(HSIL)、宫颈癌中P16蛋白阳性表达分别为0%(0/30)、42.3% (11/26)、71.9%(23/32)、92%(46/50).COX-2蛋白阳性表达分别为3.3%(1/30)、50%(13/26)、75%(24/32)、88% (44/50).随着宫颈病变分级升高,P16及COX-2蛋白阳性率逐渐上升,统计学差异有显著性(p<0.05);结论 P16及COX-2的高表达在宫颈癌的发生、发展中均起作用.  相似文献   

12.
Custom-designed zinc finger nucleases: What is next?   总被引:4,自引:0,他引:4  
Custom-designed zinc finger nucleases (ZFNs)--proteins designed to cut at specific DNA sequences--combine the non-specific cleavage domain (N) of Fok I restriction endonuclease with zinc finger proteins (ZFPs). Because the recognition specificities of the ZFPs can be easily manipulated experimentally, ZFNs offer a general way to deliver a targeted site-specific double-strand break (DSB) to the genome. They have become powerful tools for enhancing gene targeting--the process of replacing a gene within a genome of cells via homologous recombination (HR)--by several orders of magnitude. ZFN-mediated gene targeting thus confers molecular biologists with the ability to site-specifically and permanently alter not only plant and mammalian genomes but also many other organisms by stimulating HR via a targeted genomic DSB. Site-specific engineering of the plant and mammalian genome in cells so far has been hindered by the low frequency of HR. In ZFN-mediated gene targeting, this is circumvented by using designer ZFNs to cut at the desired chromosomal locus inside the cells. The DNA break is then patched up using the new investigator-provided genetic information and the cells' own repair machinery. The accuracy and high efficiency of the HR process combined with the ability to design ZFNs that target most DNA sequences (if not all) makes ZFN technology not only a powerful research tool for site-specific manipulation of the plant and mammalian genomes, but also potentially for human therapeutics in the future, in particular for targeted engineering of the human genome of clinically transplantable stem cells.  相似文献   

13.
The melanocortins are a family of bioactive peptides derived from proopiomelanocortin, and share significant structural similarity. Those peptides are best known for their stimulatory effects on pigmentation and steroidogenesis. Melanocortins are synthesized in various sites in the central nervous system and in peripheral tissues, and participate in regulating multiple physiological functions. Research during the past decade has provided evidence that melanocortins elicit their diverse biological effects by binding to a distinct family of G protein-coupled receptors with seven transmembrane domains. To date, five melanocortin receptor genes have been cloned and characterized. Those receptors differ in their tissue distribution and in their ability to recognize the various melanocortins and the physiological antagonists, agouti signaling protein and agouti-related protein. These advances have opened new horizons for exploring the significance of melanocortins, their antagonists, and their receptors in a variety of important physiological functions. Received 5 October 2000; accepted 10 November 2000  相似文献   

14.
sHsps and their role in the chaperone network   总被引:17,自引:0,他引:17  
Small Hsps (sHsps) encompass a widespread but diverse class of proteins. These low molecular mass proteins (15—42 kDa) form dynamic oligomeric structures ranging from 9 to 50 subunits. sHsps display chaperone function in vitro, and in addition they have been suggested to be involved in the inhibition of apoptosis, organisation of the cytoskeleton and establishing the refractive properties of the eye lens in the case of α-crystallin. How these different functions can be explained by a common mechanism is unclear at present. However, as most of the observed phenomena involve nonnative protein, the repeatedly reported chaperone properties of sHsps seem to be of key importance for understanding their function. In contrast to other chaperone families, sHsps bind several nonnative proteins per oligomeric complex, thus representing the most efficient chaperone family in terms of the quantity of substrate binding. In some cases, the release of substrate proteins from the sHsp complex is achieved in cooperation with Hsp70 in an ATP-dependent reaction, suggesting that the role of sHsps in the network of chaperones is to create a reservoir of nonnative refoldable protein.  相似文献   

15.
回顾了我国化纤工业发展历史,现状和地位,提出新世纪初我国化纤工程科技发展的方向和重点是加强差异化,功能性;提高工艺和装备水平,高性能纤维的产业化。研究开发绿色和新型纤维,还论述了我国化纤工业的薄弱环节和改进措施。  相似文献   

16.
Glycosylation constitutes one of the most important posttranslational modifications employed by biological systems to modulate protein biophysical properties. Due to the direct biochemical and biomedical implications of achieving control over protein stability and function by chemical means, there has been great interest in recent years towards the development of chemical strategies for protein glycosylation. Since current knowledge about glycoprotein biophysics has been mainly derived from the study of naturally glycosylated proteins, chemical glycosylation provides novel insights into its mechanistic understanding by affording control over glycosylation parameters. This review presents a survey of the effects that natural and chemical glycosylation have on the fundamental biophysical properties of proteins (structure, dynamics, stability, and function). This is complemented by a mechanistic discussion of how glycans achieve such effects and discussion of the implications of employing chemical glycosylation as a tool to exert control over protein biophysical properties within biochemical and biomedical applications. Received 15 December 2006; received after revision 28 March 2007; accepted 25 April 2007  相似文献   

17.
Summary A general update review of the dynamic aspect of protein metabolism is presented. The effect of excess protein level on protein metabolism has been the object of a limited number of studies in man. From the information available, it appears that the primary regulatory pathway for body protein homeostasis is the process of amino acid (protein) oxidation.  相似文献   

18.
Molecular mechanisms of thrombin function   总被引:9,自引:0,他引:9  
The discovery of thrombin as a Na+-dependent allosteric enzyme has revealed a novel strategy for regulating protease activity and specificity. The allosteric nature of this enzyme influences all its physiologically important interactions and rationalizes a large body of structural and functional information. For the first time, a coherent mechanistic framework is available for understanding how thrombin interacts with fibrinogen, thrombomodulin and protein C, and how Na+ binding influences the specificity sites of the enzyme. This information can be used for engineering thrombin mutants with selective specificity towards protein C and for the rational design of potent active site inhibitors. Thrombin also serves as a paradigm for allosteric proteases. Elucidation of the molecular basis of the Na+-dependent allosteric regulation of catalytic activity, based on the residue present at position 225, provides unprecedented insights into the function and evolution of serine proteases. This mechanism represents one of the simplest and most important structure-function correlations ever reported for enzymes in general. All vitamin K-dependent proteases and some complement factors are subject to the Na+-dependent regulation discovered for thrombin. Na+ is therefore a key factor in the activation of zymogens in the coagulation and complement systems.  相似文献   

19.
The flour miteAcarus siro L. (Acaridae, Astigmata) was reared on an axenic diet with the addition of various nutrient antagonists, with and without supplementation by the corresponding nutrients. The deficiency symptoms induced by dietary antagonists, and the reversibility of the former by nutrient administration, indicated that folic acid, riboflavin, thiamine, niacin, pyridoxine, biotin and a sterol are essential for the growth and reproduction of the flour mite. It was also demonstrated that the population density and generation sequence of this species can be suppressed to the level of acaristasis by nutrient antagonists, owing to inhibited nutrient utilization.Durch die Zugabe von Antiwuchsstoffen können wir nachweisen, daß das Wachstum der betreffenden Organismen gehemmt wird, und daß diese Hemmung durch die Zugabe des entsprechenden Wuchsstoffes wieder aufgehoben wird.Nielsen, N., Wuchsstoffe und Antiwuchsstoffe der Mikroorganismen. Verlag Gustav Fischer, Jena 1945.  相似文献   

20.
基于国内外深部工程普遍面临的高温状况,探讨了深部高温的形成机制与影响因素。围绕岩体导热性质研究、水热耦合迁移问题和工程环境对传热的影响三个方面阐述了深部岩体传热机理的研究现状,目前的研究成果主要体现在建立了深部工程的热交换理论体系、矿山地热学的理论体系和地下工程制冷降温系统的热力学基础。在总结分析的基础上,确立了深部岩体流固耦合传热问题的研究思路:开展深部工程区域的的渗流场监测和开展岩体的流固耦合传热实验和建立岩体在应力-渗流-温度耦合条件下的传热模型,揭示深部岩体的传热机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号