共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
在众多社区挖掘算法中,标签传播算法因为接近线性时间复杂度被广泛应用,但其也存在大量随机性,稳定性差的问题,采取一种新型的多标签策略解决重叠社区挖掘问题,并根据节点度减少初始标签赋予量的方法提升了算法的稳定性. 相似文献
3.
重叠社区发现是复杂网络研究的重要课题.提出一种基于标签传播的重叠社区发现算法.首先利用标签传播算法得到初始无重叠社区划分结果,之后通过设计新的重叠节点识别算法确定重叠节点,最后再根据重叠节点的识别结果对社区进行合并从而得到最终的重叠社区划分结果.该算法克服了已有算法重叠节点占比过大的弊端.为验证算法的有效性,在LFR人工数据集、3个标准公开测试集以及真实的大豆基因共表达网络上进行实验,并与已有算法进行对比.实验结果表明,该算法性能明显优于对比算法,极大地改善了重叠节点比重过大问题. 相似文献
4.
《云南大学学报(自然科学版)》2020,(1)
针对基于标签传播的重叠社区发现算法中出现的随机性和不稳定性问题,提出了一种新的基于节点亲密度的标签传播算法.首先,利用网络的局部信息,以模块度增量为依据,对网络中节点进行粗聚类,实现对节点的初步划分;然后,定义节点亲密度函数进行标签的更新和选择.在人工和真实网络上对算法进行验证.结果表明,该算法能有效地提高大规模重叠社区检测的准确性和稳定性,并且具有近乎线性的时间复杂度. 相似文献
5.
重叠社区发现是复杂网络分析研究的重要目标之一。针对传统多标签传播算法存在的社区发现结果具有随机性、不稳定性,以及忽视节点影响力对标签传播的影响等问题,提出一种基于节点影响力与多标签传播的能够生成稳定社区的重叠社区发现算法。算法在节点影响力的计算、排序和核心节点识别基础上,通过邻居节点初始标签的再处理和基于平衡系数的节点标签异步更新策略,实现复杂网络重叠社区的有效识别。在真实数据集和人工数据集上的实验综合表明,算法性能优于各对比算法,适用于大规模复杂网络。 相似文献
6.
采用标签传播算法进行社区发现时间效率高,无需人工参数,但容易产生精度限制的问题.研究了启发式的标签传播算法,快速地进行社区的初始划分,大量减少了初始标签的个数,进行标签迭代传播来修正初始划分得到最终的社区.理论分析和实验证明这种方法在不增加时间复杂度的情况下,提高了准确率,并有效消除了精度限制的现象. 相似文献
7.
针对传统社区传播算法存在局部震荡、划分结果不稳定、划分结果分辨率高等弱点,提出了非随机的标签传播社区划分算法,通过去除传统算法的随机性进而克服其弱点.该算法主要进行了3个方面的改进:按特定顺序更新节点的标签;计算标签数量时,不仅统计邻居节点,而且统计待更新节点本身;通过贡献函数避免多个最大值时的随机选择.实验证明,该算法不仅保证了算法的划分正确性,而且大幅度减少了计算过程中的随机选择动作. 相似文献
8.
《南京大学学报(自然科学版)》2017,(3)
社区挖掘是复杂网络研究的核心内容之一.基于局部结构建模的重叠社区发现方法由于可利用局部先验知识,具有适应网络动态环境,建模速度快,可多角度呈现局部结构特征等优点,当前已成为大规模网络发现研究的前沿热点.从理论发展沿革与现实应用的视角,介绍重叠社区发现研究近来的相关研究进展.通过分析重叠社区发现研究存在的关键问题,给出基于局部结构特征的重叠社区挖掘研究框架,并对几类典型的重叠社区发现方法展开分析比较.然后进一步阐述和探讨如何面对现实超大规模网络、多态异构网络、不确定性数据、动态演化结构等方面面临的巨大挑战.最后总结并展望了基于局部结构的重叠社区发现研究的未来方向和前景. 相似文献
9.
10.
重叠社区发现技术对于分析网络社区间关系具有重要意义,本文提出了基于Louvain重叠社区发现算法,该算法在Louvain算法的基础上使用模块度Q的增益度函数dq判断节点是否具有重叠性,并且发现重叠社区;设计实验验证该算法,使用经典数据集American College Football对该算法与常用重叠社区发现算法CPM、LFM和COPRA进行实验对比,结果表明:增益度函数dq能判断重叠节点,且通过找到社会网络中的重叠节点发现重叠社区;该算法在重叠模块度EQ上比CPM、LFM和COPRA算法分别提高17.05%、12.81%和9.45%,在运算时间上比CPM算法、COPRA算法分别增加了12.62%、7.15%,比LFM算法减少了23.06%,表明在综合重叠模块度EQ与算法时间上,本文基于Louvain重叠社区发现算法都优于其他的算法。 相似文献
11.
《华中科技大学学报(自然科学版)》2015,(9)
针对社会网络中的重叠社区识别问题,提出用从属度描述节点对不同社区的紧密程度,并把模块度扩展到重叠社区的识别.基于Girvan和Newman提出的非重叠社区识别(GN)算法设计了重叠社区的串行识别算法.基于MapReduce模型设计了并行识别算法,以提高识别效率.对模块度与重叠度进行了分析,结果表明:所提出的算法在计算机科学文献网络中能有效识别重叠社区,且运行效率优于已有重叠社区识别算法. 相似文献
12.
网络中的社区发现是当前的一个研究热点。在众多社区发现算法中,标签传播算法因简单快速而被广泛应用。但标签传播算法也存在结果稳定性较差的问题。通过提取非重叠完全子图来避免社区重叠,提取最小极大团来避免巨型社区的出现,基于此,对标签传播算法的初始化过程进行改进,提出了一种稳定的标签传播社区发现算法,即非重叠最小极大团提取算法。在真实网络中的实验结果表明该算法可以大幅提高结果的稳定性。 相似文献
13.
14.
基于图的标签传播算法是半监督学习中的研究热点之一,其性能很大程度依赖于图的质量.为了应对这一问题,文章提出了基于聚类的标签集成传播算法.该算法对样本集进行多次聚类,在每次聚类产生的簇中,利用互补熵度量簇内样本标签的混乱程度,并在混乱程度较小的簇中进行标签传播,当一个未标记样本获得某个标签的次数与聚类次数的比值大于50%... 相似文献
15.
发现复杂网络中的重叠社区是目前复杂网络分析的重要内容。选择社区代表性强的节点作为种子节点进行扩展是基于种子扩展策略重叠社区发现算法的关键,提出了一种基于度信息和邻域连通性的节点邻域中心性度量指标,并在此基础上提出了一种基于局部邻域连通性的重叠社区发现算法(Local Neighbor-hood Connectivitybased overlapping community detection Algorithm,LNCA)。首先计算每个节点的局部邻域连通熵和邻域中心性cc,选择中心性高的节点作为种子节点;然后采用带重启的随机游走策略扩展种子节点并得到初始社区;最后合并重叠度较大的社区得到最终社区发现结果。在6个带真实社区标签的网络和9个无真实社区标签的网络上,与SLP A、DEMON、CPM、NodePerception、EgoNetworks、EgonetSplitter等6个经典重叠社区发现算法进行比较,结果表明,在带标签网络上,LNCA算法在重叠NMI和F1分数上优于多数对比算法,可得到与网络真实社区更匹配的社区结... 相似文献
16.
当原图转换成边图后,在边图上进行社区发现可以天然地得到重叠社区,然而得到的社区往往相互大面积重叠,甚至相互包含,导致社区模块性质量较低.针对这一问题,在得到边图下重叠社区发现算法结果的基础上,我们将进一步以优化重叠社区模块化质量函数为标准进行社区合并,以获得高质量的重叠社区.本文首先提出一种描述社区间重叠程度的重叠系数,并基于此进一步提出一种构建带权社区图的启发式方法,能够快速有效地完成社区合并的过程.在人工生成网络与真实世界网络上的实验,进一步验证了该算法能够在不削弱边图方法速度优势的前提下,提高高度重叠社区的模块性. 相似文献
17.
基于全局划分和局部凝聚原理,改进得到一种两步式挖掘算法,该算法以寻找最优模块性Q值为基准,最终挖掘出重叠社区.对两个经典真实世界网络的Zacharys Karate俱乐部数据和海豚网络数据进行了实验测试,实验表明该算法能够有效地划分出重叠社区. 相似文献
18.
《云南民族大学学报(自然科学版)》2017,(4):317-321
发现复杂网络中的结构和特征是社区发现的一个重要任务.标签传播算法(LPA)因具有接近线性的时间复杂度,常用于快速处理大规模的社区网络.针对该算法在节点的更新顺序和标签选择策略上存在很大的随机性,严重破坏了算法的稳定性和社区划分结果的准确性.提出了一种基于节点H指数的标签传播算法,即利用节点的综合影响力改进标签传播算法的节点更新顺序和标签选择策略.实验研究表明,改进算法有效地降低了算法的随机性,提高了社区划分的稳定性和准确性. 相似文献
19.
《南京师大学报(自然科学版)》2018,(3)
协同过滤算法已成为用来为用户提供个性化服务以处理海量信息最常用的方法之一.本文提出一种基于重叠社区发现的社会网络推荐算法,该算法同时考虑了群组用户的兴趣以及他们复杂的内部关系,通过将重叠社区发现算法和基于模型的社会推荐算法进行创新融合,以实现重叠社区的发现、建立,和基于社区的智能推荐.基于开放数据集,本文设计了一系列相关实验以验证算法的有效性和准确性.实验结果表明本文提出的算法可以实现高效且准确的社会网络推荐. 相似文献
20.
《山东师范大学学报(自然科学版)》2016,(2)
社区发现是复杂网络研究的基础,其目的是发现网络的真实结构,对于分析复杂网络的拓扑结构、理解其功能和寻找其潜在的性质具有重要的意义.Palla,Yong和James等人分别提出了CPM、LINK算法,此类算法基于网络拓扑结构或边密度发现复杂网络中的社区,性能较好,但不足是计算出的社区存在过度重叠问题.如何设计新算法,避免社区发现的过度重叠问题,是一个亟待解决的重要问题.本文基于加权边相似度,提出了一种社区发现算法LINKw,可以高效发现社区结构,与其他算法相比,本算法能更好地解决社区过度重叠问题. 相似文献