首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对样品表面吸附和污染导致扫描电子显微镜能谱仪成像质量和检测精度下降的问题,提出了一种扫描电镜能谱分析方法——吸附表面二次电子发射数值计算模型。首先,采用Polanyi位势理论在Cu表面构造了N2多层吸附模型;其次,考虑吸附对功函数及电子散射过程的影响,采用Monte Carlo方法追踪电子在材料和吸附层内的散射轨迹,建立了电子与N2分子散射模型;最后,将N2多层吸附模型与电子与N2分子散射模型合并,建立了吸附表面二次电子发射的精确模拟模型,用于计算N2吸附分子对能谱的影响规律。数值计算结果表明,当N2分子吸附量增大至3×1016 cm-2时,二次电子能谱的最可几能量和半峰宽分别增大了3.16、4.76倍,二次电子比例减少至原来的215。采用所提模型对探测器进行优化设计,能够提高二次电子信号收集效率、降低噪声信号、提高分辨率。相比以往模型,所提模型突破了仅适用于分子吸附量小于3×1015 c...  相似文献   

2.
利用第一原理密度泛函方法对四种金属二硼化物ZrB2、VB2、TaB2和NbB2的表面性质进行探究,计算其主要密排面(0001)、(10-10)和(11-20)不同终结面的电子功函数,并通过表面能曲线讨论了各个表面不同终结情况时的稳定性.研究表明,四种MB2各个密排面的功函数值均比金属终结面更低.ZrB2的金属终结面较硼终结面表面能更低,更为稳定.而VB2、TaB2和NbB2的硼终结面更为稳定,同族元素的表面能呈现相似变化趋势.  相似文献   

3.
采用密度泛函理论(DFT)方法对二硫化钼(MoS2)完整表面和不同掺杂浓度下过渡金属Zn原子掺杂MoS2表面(Zn-MoS2)的构型、电子结构及其电催化析氢性能进行了研究.研究结果表明:与MoS2完整表面相比,Zn掺杂单层MoS2的氢吸附吉布斯自由能(-0.09 eV)明显减小,接近理想值(约0 eV),表现出优异的析氢催化反应性能.电子结构研究结果表明:Zn掺杂MoS2表面后,体系费米能级附近出现了Zn-3d轨道的带隙态,这表明有效调控了MoS2催化材料的电子结构.在费米能级附近还出现了与Zn原子相邻的S原子的3p轨道的新电子态,可有效增强S-3p轨道和H-1s轨道的重叠,从而提高吸附氢的性能、优化电催化析氢性能.进一步对不同Zn掺杂浓度下Zn-MoS2体系的研究结果表明提高Zn掺杂浓度仍能保持优异的电催化析氢反应性能.该文通过引入不同Zn掺杂浓度的方法,对MoS2电催化剂的电子结构进行调控,从而有效提升电催化析氢反应性能.  相似文献   

4.
自1921年首次发现超导体之后,其被广泛应用在超导计算机、电子学、医学影像等领域,成为百年以来物理学界研究的焦点.目前,低压超导体更是人们一直研发的重要材料.本文将铜元素与锂元素混合,在高压环境下进行系统的结构预测.利用第一性原理的计算方法,在50 GPa的压强下,得到了两种反常化学计量比的化合物Li4Cu和Li6Cu.观察发现,Li6Cu晶体结构是以铜原子为中心、周围十二个锂原子构成的二十面体“Li12Cu”,铜原子通过获得锂原子提供的大量电子,达到了较高的负氧化态(-3.5).另外,通过电声耦合计算,估算得到了Li4Cu和Li6Cu的超导转变温度Tc分别为2.3 K和14.5 K.本研究证实了贵金属锂合金是潜在的超导电材料,为后续理论和实验的研究提供了借鉴.  相似文献   

5.
通过基于密度泛函理论(DFT)+U的第一性原理方法研究了单原子Co在TiO2(101)面的掺杂位置和方式、几何结构和整体能量以及掺杂后产物的制氢反应机制,得到了稳定且易出现的单原子修饰结构,即单原子Co吸附在4个O组成的表面空隙的中心位,记为Co/TiO2(101)。进一步对Co/TiO2(101)的析氢反应过程和性能进行研究,确定了当且仅当TiO2(101)面完成表面羟基化反应后,H原子全覆盖的TiO2(101)表面才能进行后续的析氢反应;此时单原子Co是唯一的反应位点,整体的制氢反应自由能ΔGH*比Co(111)面更加趋近于0,显示出其具有远优于金属Co的催化性能。此外,Co和TiO2间的电荷转移和相互作用使TiO2带隙出现新的掺杂能级,可带来作为光催化基材的TiO2光吸收性能的改善。  相似文献   

6.
采用基于密度泛函理论的第一性原理赝势平面波方法对H,F,Al, K,Zn掺杂二维MgCl2单层材料的几何结构和电子性质进行研究.结果表明:几种掺杂体系的晶体结构均有不同程度变化;由于H,Al, Zn的s态电子影响,这3种元素掺杂的MgCl2在禁带中明显出现杂质能级,F和K掺杂体系的杂质能级出现在价带顶,与本征MgCl2材料的5.996 eV带隙相比,H,F,Al, K,Zn掺杂体系的禁带宽度分别减小至5.665,5.903,4.409,5.802,5.199 eV; 5种掺杂体系杂质原子周围的电荷均重新分布;电荷转移情况与差分电荷密度结果一致;与本征MgCl2的功函数8.250 eV相比,H,F,Al, K,Zn掺杂体系的功函数分别减小至7.629,7.990,3.597,7.685,7.784 eV.  相似文献   

7.
基于M06-2X理论方法, 在加有弥散函数的aug-cc-pVTZ基组水平上, 用含时密度泛函理论(TDDFT)方法进行电子激发计算, 给出隐式溶剂氯仿下Met(甲硫氨酸)+H2O复合体系手性转变中第一基元反应中间体INT1-S-Met-CHCl3+H2O分子体系的空穴-电子、自然跃迁轨道(NTO)和电荷密度差(CDD)分布等值面图, 并分析中间体激发态的性质及其电子结构. 结果表明: H原子迁移形成中间体, 引起Met分子体系结构发生显著变化; 基于NTO、空穴-电子和CDD等值面与空穴-电子数据分析对INT1-S-Met-CHCl3+H2O分子体系激发态激发类型互认具有一致性.  相似文献   

8.
尖晶石钛酸锂(Li4Ti5O12)作为锂离子电池负极材料具有长寿命、高稳定性的特点,是高功率锂离子电池的理想选择,对发展电动汽车以及智能电网有重要意义.结合球差校正透射电镜(STEM)、电子能量损失谱(EELS)和理论计算,在原子尺度观测到了尖晶石钛酸锂(Li4Ti5O12)的结构,实现了对脱嵌锂过程的直接观测与表征.在锂化过程中,出现一个近似理想的异质界面(Li4Ti5O12/Li7Ti5O12),界面两侧Ti离子呈不同价态分布(Ti3+/Ti4+).而随着锂离子在材料中的嵌入和脱出,TiO6八面体里面的Ti—O键会产生相应的收缩或拉伸(“呼吸”模型),而这种键长的变化直接导致材料在不同区域的电子电导率产生质的变化(由绝缘体的Li4Ti5O12向近似导体的Li7Ti5O12转变),而基本不影响材料的离子电导率,这是材料具有优良倍率性能的重要条件.借助原子分辨的EELS分析研究锂化以后的Li7Ti5O12表面, 观测到材料表面的Ti3+自发氧化成Ti4+,这个电荷转移过程可以诱导电极材料界面上的副反应,可以合理解释钛酸锂电池产气的原因.进一步将钛酸锂电池用于储钠研究发现了晶格中存在Li4Ti5O12/Li7Ti5O12/Na6LiTi5O12三相分离机制,深化了对电极材料过程动力学的认识.这些重要研究结果为钛酸锂的工业化应用提供了重要的结构基础与理论指导.  相似文献   

9.
为了提高汽车尾气催化剂的抗硫性能,延长催化剂寿命,采用密度泛函理论的方法研究了Sn掺杂Cu/CeZrO2(110)催化剂的电子结构和SO2抗硫性能之间的关系。计算结果表明Cu在CeZrO2(110)表面上最稳定吸附位点是氧桥位,最稳定吸附能为-3.52 eV,此时结构最稳定。通过分析Cu—d带中心、电荷变化、分波态密度(PDOS)和SO2的吸附能发现,Sn原子掺杂增强了活性组分Cu的正电性和Cu—O之间的相互作用,抑制了SO2在Cu活性位点上的吸附,从而提高了催化剂的抗硫中毒能力,显著提高了催化剂的催化性能。研究为高性能汽车尾气催化剂的优化设计提供了理论借鉴。  相似文献   

10.
采用基于密度泛函理论的第一性原理计算,研究了二维过渡金属磷系化合物Mn Tn+1 (M=V, Cr;T=P, As, Sb)材料的结构、稳定性、电子结构和磁性质.通过计算形成能和声子谱,发现只有V4As5、Cr2P3、 Cr3P4、 Cr4P5、 Cr2As3和Cr3As4是稳定的二维磁性多层膜.计算结果表明,这些稳定的二维磁性材料都是反铁磁金属.此外,还对这些材料的电子结构和磁耦合机制做了进一步的分析.  相似文献   

11.
空气中活性气体在钚材料表面的吸附行为是引起钚材料表面腐蚀的重要原因。采用第一性原理方法对空气中N2和O2在δ-Pu (100) 表面的吸附行为进行了研究。对所有稳定吸附构型进行Bader电荷分析以及吸附能与结合能分析的结果表明:N2的最稳定吸附构型为H-S-N6,O2的最稳定吸附构型为H-P-O4。对这2种吸附构型进行差分电荷密度分析、态密度(DOS) 分析和晶体哈密顿轨道布居数(COHP) 计算的结果表明:N2和O2在δ-Pu (100) 表面的吸附均为强化学吸附,且O2的吸附远远强于N2。成键本质均为N原子或O原子的2s和2p轨道与表面Pu原子的6p、6d和5f轨道发生重叠杂化作用。研究结果对于N2和O2在δ-Pu (100) 表面共吸附行为的研究奠定了良好基础,对揭示钚材料在空气中的表面腐蚀机制有重要意义。  相似文献   

12.
采用基于密度泛函理论的第一性原理平面波赝势的方法,通过搜寻Mg原子在硅Si(220)晶面上的最佳吸附位置,计算Mg/Si(220)体系的吸附能、电子态密度、电子布居和功函数等,系统研究了Mg原子在Si(220)表面的吸附过程.结果表明:Si表面Mg原子的最稳定吸附位置为Si(220)晶面的穴位,此时吸附能最低.同时,Mg/Si(220)体系中Mg原子的2p和3s轨道电子与Si原子的3s和3p轨道电子间的强相互作用使体系的电子布居和功函数发生改变.  相似文献   

13.
采用密度泛函理论研究了MoP催化剂中K助剂的不同形态,即K原子和K_2O分子吸附于MoP(101)表面的稳定构型、功函数和态密度.计算结果表明,在K/MoP(101)和K_2O/MoP(101)2种表面模型中,K原子和K_2O均会将电子转移到MoP(101)表面上,使其功函数明显降低.态密度分析表明,K原子和K_2O与MoP(101)表面均存在较强的相互作用.整体来看,K助剂的不同形态对表面电子性质的影响是相近的.  相似文献   

14.
界面电子转移对纳米TiO2薄膜导电性的影响   总被引:2,自引:3,他引:2  
研究纳米TiO2薄膜的导电性与薄膜厚度和基底材料的关系. 结果表明, 沉积在Ti和Si基底上的TiO2薄膜的电阻率随着膜厚的 增加而非线性增大, 分别经历了导体、 半导体到绝缘体或半导体到绝缘体的电阻率范围的变化过程, Ti O2薄膜导电层厚度也不相同, 沉积在玻璃表面TiO2薄膜为绝缘体. 这些现象是界面电子在界面的转移所致, 基底材料与薄膜功函数差的大小决定了导电层厚度.  相似文献   

15.
为了阐明In的掺杂能提高SnO2(110)表面气敏性能的反应机制,采用密度泛函理论研究了NO2分子在In掺杂SnO2(110)表面的吸附行为. 计算结果表明:In的掺杂可以提高材料表面的导电性,形成具有氧空位的缺陷表面,有利于发生活性氧在表面的预吸附过程. 掺杂的In5c/SnO2(110)表面对NO2表现出良好的吸附性,对NO2气体的选择性和灵敏度提高的主要原因是In掺杂后氧空位缺陷表面的形成. 此外,活性氧物种的预吸附对材料表面气敏性能的影响取决于NO2在材料表面的具体吸附位点,其中Sn5c位点的吸附促使电荷从表面转移到气体分子,导致表面电阻的增大以及氧空位的产生,从而表现出优异的气敏吸附性能.  相似文献   

16.
为了揭示掺杂对Al(111)面O2吸附性能影响规律。采用基于密度泛函理论(Density Functional Theory, DFT)的第一性原理计算方法,通过构建模型以及设置计算参数,计算得到了不同O原子覆盖度下Ni、Mn、Si掺杂对应Al(111)面吸附O2的吸附能、功函、Bader电荷、差分电荷密度、以及态密度。研究表明:当氧原子覆盖度较低情况下,纯铝表面吸附能绝对值最大,转移电子数最多,原子之间存在相互作用并主要由最外层电子轨道决定。当氧原子覆盖度增大至3/8时,掺杂表面吸附能大于纯铝表面,掺杂促进了Al(111)面吸附氧分子。结果表明:Al(111)面吸附氧分子的能力不仅与掺杂元素有关,还与各表面O原子的覆盖度有关,当O原子覆盖度较低时,Mn、Si、Ni掺杂抑制了O2吸附,当覆盖度较高时,Ni、Mn、Si掺杂促进了O2吸附。  相似文献   

17.
氢化非晶碳膜作为一种场致阴极电子发射材料已被广泛研究,通过对薄膜进行掺杂以提高其场发射特性已被证明是行之有效的方法之一.利用常规等离子体化学气相淀积技术制备了氢化非晶碳薄膜材料,在原位利用氮等离子体对碳膜表面进行N型掺杂.通过不同手段研究了氮表面掺杂前后非晶碳膜的微结构和化学键的变化,对表面掺杂前后的薄膜的场电子特性的测量表明,在氮表面掺杂后其场电子发射特性有了明显改善,特别是场发射的阈值电场从掺杂前的3.2 V/μm下降到掺杂后的1.0 V/μm.初步实验分析表明:由于氮表面掺杂后,在碳膜表面形成N-H键,从而导致碳膜表面的有效功函数降低使场电子发射特性得以提高.  相似文献   

18.
研究了氢气在金属体Ni(111)表面的top,bridge,hcp,fcc这4个不同位置吸附能以及4个吸附位中H原子距离下层Ni原子层的垂直距离,可知hcp和fcc这2种空洞位的吸附要稳定些,bridge吸附位是非常不稳定的,容易走向hcp位吸附.各吸附位的吸附能分别是Ead-top=-11.622 kJ·mol-1,Ead-bridge=-12.036 kJ·mol-1,Ead-hcp=-12.047 kJ·mol-1,Ead-fcc=-12.078 kJ·mol-1,表明H2在表面Ni(111)的4种吸附属于化学吸附.表面Pt(111),Rh(111),Ru(111)对具有H2相似的吸附行为有待进一步的研究.  相似文献   

19.
以超冷分子的感应冷却实验为背景,研究同核碱金属双原子分子Li2和F原子体系在低和超低碰撞能条件下的冷碰撞动力学机理.针对弱相互作用势能面构建出一个精确势能函数,使势能函数既能考虑到以排斥占优的短程相互作用也能兼顾到以吸引为主的长程相互作用.计算结果表明,Li2—F基态势能面存在2个比较浅的势阱,θ=0°对应于倒"T"型结构,RLi—Li=5.6a0时,阱的深度约为-0.18 cm-1;θ=90°对应于线型结构,RLi—Li=2a0时,阱的深度约为-0.23 cm-1.Li2—F分子体系整个势能面呈现出了强的角度各向异性.  相似文献   

20.
基于密度泛函理论与非平衡格林函数相结合的第一性原理计算方法,研究了Se与Te原子替位掺杂对WS2-MoS2纳米器件电子输运性质的影响.结果表明,WS2-MoS2纳米器件为间接带隙半导体,器件电流在[+0.7 V,+1.0 V]与[-1.0 V,-0.9 V]偏压范围内随着偏压的增大逐渐减小,呈现显著的负微分电阻效应;Se与Te原子对WS2-MoS2纳米器件进行替位掺杂后均呈现有趣的负微分电阻效应,器件两端电流的隧穿也显著改善;Se原子对WS2-MoS2纳米器件中S原子进行替位掺杂时,器件转化为p型半导体;Te原子对WS2-MoS2纳米器件中S原子进行替位掺杂时,器件转化为p型半导体甚至金属,且导电性能大幅提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号