首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
结合评分和信任的协同推荐算法   总被引:1,自引:0,他引:1  
针对现有基于信任的推荐系统虽能缓解冷启动和虚假评价但较难获取用户之间的信任关系,难以建立用户彼此之间的偏好关系的问题,提出了基于评分-信任协同的推荐算法并给出了相关数学表达式和实现流程。该算法充分利用推荐系统中的共同评分,协同用户间的信任关系,有策略地选择用户评分的相似度和用户间信任值,建立用户之间的偏好关系,进而实现推荐。随着共同评分数目下限值的增加带来推荐准确度提高的同时将造成覆盖率的下降,因而关键是选取合适的下限值。实验结果表明,这种混合推荐的方法相比传统协作推荐方法与信任推荐方法,在精度损失极小的情况下,较大地提升了覆盖率。评分覆盖率指标分别提高了3%和32.1%,用户覆盖率指标分别提高了8.2%和15.1%,从而获得了精度与覆盖率的良好平衡。  相似文献   

2.
推荐系统是一种能够帮助用户在面对大量信息时,能快速?有效地获取有用资源的工具?协同过滤是目前广泛使用的一种推荐技术,该技术通过相似邻居对项目的评分为源用户产生推荐,但面临数据稀疏性和冷启动的问题?基于信任模型的推荐系统虽然在一定程度上缓解了上述问题,却仍然需要进一步提高?针对这些困难,提出了一种融合了信任度和相似度的算法?该算法利用用户间的信任信息,将源用户的信任邻居对项目的评分作为该用户的个人喜好,同时根据基于物质扩散的协同过滤算法找出源用户的相似邻居,利用信任邻居和相似邻居为该用户产生推荐?在2个真实数据集上的实验结果显示,融合算法对冷启动用户的准确性比协同过滤算法分别提高了19%和37%,覆盖率分别提高27%和42%?  相似文献   

3.
为了克服推荐算法的静态性缺点,提出融合相似用户和信任关系的动态反馈协同过滤推荐算法.该算法用动态因子融合相似用户和信任关系,动态因子初始取随机数,根据用户反馈和系统预测的误差建立正负反馈机制.按照反馈类型,选择增值或衰减函数适当调整动态因子,以便系统更好预测用户评分.在真实数据集Epinions上的实验表明,采用正负反馈的动态融合算法,不仅克服了静态性缺点,而且较基于相似用户或者信任关系的推荐进一步提高了推荐准确率.  相似文献   

4.
为了提高传统协同过滤推荐算法推荐的准确度,对评分信任和社交信任赋予自适应的权重,结合概率矩阵分解算法,提出一种综合的个性化推荐算法.该算法在Filmtrust数据集上进行验证,并与相关算法进行对比,结果表明所提算法在MAE(mean absolute error)和RMSE(root mean squared error)指标上均得到有效的改进.  相似文献   

5.
为提高短文本语义相似性度量准确性,设计一种基于混合机器学习模型的短文本语义相似性度量算法.先对短文本实施预处理,基于混合机器学习模型构建短文本的字词向量模型,对短文本进行特征扩展;然后组合短文本的多样度量特征,对多样度量特征进行维度规约;最后通过构建一个集成学习模型,计算语义相似性结果,实现语义相似性的度量.使用“Quora Question Pairs”比赛数据集测试该方法的性能,测试结果表明,该方法的准确性较高,对数损失和度量均方差均较低,说明该方法的相似性度量准确性较高.  相似文献   

6.
研究了分布网络环境中交易实体的信任问题,分析了信任的含义并考虑影响信任行为的外部环境因素,结合主观判断和推荐,构建了一种新型信任模型并引入惩罚机制,建立信任更新协议。  相似文献   

7.
针对社交网络中无法有效管理陌生推荐安全性难题,提出了一种基于信任的评估推荐控制模型(TRCM).该模型描述了社交网络推荐中个体角色、推荐路径、可信任值、控制规则等方面内容.模型结合社交网络个体之间取信度、信誉度评估方法,分别计算串路型、并路型和复合型3类推荐信任度,并给出了客观偏移度和信心指数评估.同时,TRCM定义了一组信任控制规则以管理社交网络中的推荐行为.实验表明,该方法是有效可行的.  相似文献   

8.
分析了传统CF算法和基于项目评分的CF算法中存在的问题,对其相似性计算和推荐集选取方法进行了改进,并提出了一种优化的CF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度,同基于项目评分的CF算法相比能够有效减少计算复杂度。  相似文献   

9.
曲线形态相似性的定义与度量   总被引:1,自引:0,他引:1  
提出了曲线形态相似性的定义与度量问题.介绍了一种曲线的划分方法,得到一个曲线的比值样本,基于统计学原理,给出了曲线相似性的定义与度量方法.并通过算例验证了该相似性度量方法的可行性.  相似文献   

10.
为了克服肺部病变CT表现复杂,极易造成医生误诊的缺点,提出了一种基于相似性度量的医学图像检索算法并用于肺癌的诊断研究,该相似性度量保持了图像的语义相关和视觉相似.首先,根据相似性度量理论构建距离度量学习算法学习一个马氏距离;然后,根据学习的马氏距离度量,提出新的医学图像检索算法,并将提出的算法应用于肺癌的诊断研究.实验结果证明了该检索算法在肺癌诊断应用中的可行性和有效性.  相似文献   

11.
一种基于信任网络的协同过滤推荐策略   总被引:1,自引:0,他引:1  
提出了一种基于信任网络的协同过滤推荐策略,在传统协同过滤策略中引人信任网络,将相似度和信任度结合在一起,提高推荐的准确率.实验证明,在数据稀疏的情况下该策略比传统的协同过滤推荐策略有更好的推荐效果.  相似文献   

12.
随着通信用户数量的逐渐增加,当前多维信任数据协同推荐算法无法有效满足用户对资源多样性、准确性和发掘能力的要求。为此,提出一种新的定向信息推荐下多维信任数据协同推荐算法。通过矢量空间模型对用户兴趣进行描述,将具有代表性的用户看作该类用户的聚类中心,建立用户对资源的偏好矩阵,求出依据综合信任值的用户相似度;重复选择聚类中心,直至符合既定阈值。获取用户聚类结果后,选择待推荐用户所处聚类中和该用户相似的若干用户,依据上述近邻对目标资源的评分值实现目标用户对目标项目的预测。给出定向信息推荐下多维信任数据协同推荐算法的实现过程,输出Top-N多维信任数据推荐集合。实验结果表明,所提算法预测精度和资源多样性高,发掘能力强,推荐效果好。  相似文献   

13.
汇编语言程序相似性检测混合算法   总被引:1,自引:0,他引:1       下载免费PDF全文
根据汇编语言自身的特点,提出了结合属性计数和结构度量技术的相似性检测混合算法.在该方法中,将程序段的数目、子程序定义和调用的次数、循环指令loop出现的次数、转移指令出现的次数作为结构信息,73个使用频率较高的关键字作为属性信息.在从汇编语言程序中提取这些信息后,利用卡方检验来判断2个程序的相似性.实验结果表明,从混合...  相似文献   

14.
巴氏距离可以衡量离散概率分布的相似性.在Komodakis的基于置信传播的图像修复算法基础上,提出在搜索最佳匹配块时,以欧式距离为主、巴氏距离为辅的方法度量待修复块与样本块之间的相似性,以提高正确匹配率.结果表明,该方法对缺失纹理的修复具有很好的效果,明显提高了修复质量.  相似文献   

15.
在分析经典集合相似性度量问题的基础上,对于模糊集合的相似性度量问题,提出了一种基于面积的相似性度量方法.不仅适用于论域是离散的情形,而且也适用于论域是连续的情形.  相似文献   

16.
用户间的信任关系、用户对商品的偏好兴趣及商品的时效性都会影响对商品的推荐效果.将这些因素引入到基本的HITS算法中,对HITS算法进行了改进.将用户对商品的偏好兴趣矩阵进行了改进,利用隐馈数据通过逻辑回归算法估计用户对商品的偏好兴趣,对评分为零的情况赋予了不同的偏好兴趣度,这样更符合实际.将改进的HITS算法和协同过滤算法相结合得到一个混合推荐算法,同时将用户分为活跃用户和非活跃用户分别进行推荐.将提出的算法在Movielens数据集上进行了试验,结果表明该算法在一定程度上缓解了数据稀疏和冷启动的问题,推荐效果优于基于用户的协同过滤算法.  相似文献   

17.
改进的个性化推荐算法   总被引:3,自引:0,他引:3  
协同过滤技术是个性化推荐系统中最早也是最为成功的技术之一。但是随着电子商务系统用户数目和商品数目的日益增加,整个项目空间上用户评分数据极端稀疏,传统的CF(协同过滤)方法均存在各自的不足。本文分析了传统cF算法中存在的问题,对其相似性计算方法进行了改进,提出了一种优化的cF算法。实验结果表明,该算法同传统CF算法相比能显著提高推荐精度。  相似文献   

18.
形式化概念分析已被证明是一种支持模块重组的有效工具.然而,在使用概念分析进行模块重组时,仍存在一些问题有待进一步解决.本文提出一种自动化的遗留软件重组方法,用于从识别的模块化方案中获取一种最佳解决方案.通过在概念分析过程中引入概念抽象、哑概念和概念相似性度量等新的特性,有助于解决现有方法的不足.概念抽象用于表示候选模块...  相似文献   

19.
软件成本数据常常表现为高维混合属性数据,传统的相似性度量已不再适用.文中通过建立软件成本数据的高维模糊C均值(FCM)聚类算法对数据相似性进行度量.首先,定义由序数属性到数值属性的初始映射;然后,通过建立改进的迭代高维FCM聚类算法对序数 数值映射进行修正,优化聚类效果;最后,利用得到的模糊划分矩阵对软件成本数据的相似性进行度量.实验结果表明,通过对聚类效果进行优化,文中定义的相似性度量能够提高软件成本估算精度.  相似文献   

20.
随着互联网和推荐系统的不断发展,推荐服务的对象由单一用户扩展为群组成员,获取并融合组内成员的偏好、提升群组推荐效果成为当前推荐领域研究的热点问题.利用用户提供的多属性评分矩阵,提出一种融合隐式信任与属性偏好的群组推荐算法.首先,基于用户共同评分项目数和多属性评分相似度计算用户间的直接隐式信任,并利用信任传递机制获取用户间的间接信任,降低数据稀疏性.然后,通过计算用户各属性评分与总体评分间的距离来挖掘用户的属性偏好,在此基础上,利用注意力机制学习组内用户权重,将用户偏好聚合为群组偏好,进而结合深度学习框架对候选项目进行预测,生成最终的推荐列表.最后,四个数据集上的实验验证了提出的算法的有效性和可行性,实验结果表明,该算法的准确率、nDCG等评价指标明显优于对比算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号