首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
活动星系核(AGN)是指那些具有强烈电磁辐射的星系核心,其巨大能量是由中心超大质量黑洞(SMBH)吸积周围物质,将其释放的引力能转化为热能、辐射能而产生的.各种时标的多波段光变是AGN的典型观测特征,其中尤以X射线光变最为引人注意,因为其光变剧烈、时标短、携带着AGN吸积盘最内区的丰富物理信息,长期以来一直被用作研究星系中心SMBH的探针.但是,目前对AGN的X射线光变还没有很根本的认识,对其来源和产生机制仍不甚清楚.爱因斯坦探针(Einstein Probe,EP)卫星具有空前的软X射线巡天能力,其grasp(即探测器有效面积与视场的乘积)比起之前同类卫星提高了一到两个量级,这使得EP能在从百秒到年的采样频率上对全天数百个亮AGN进行监测,获得前所未有的大样本、宽采样频率覆盖的光变数据.我们拟据此重点开展以下4个方面的研究:对大样本亮AGN的软X射线功率谱进行完整测量;系统监测和研究AGN中罕见的大幅度X射线光变和耀发现象;研究大样本AGN的长期光谱变化以及开展其爆发监测;开展AGN/类星体巡天.这些数据将促进对AGN X射线辐射的剧烈光变与爆发现象及其产生机制,SMBH的吸积盘、喷流及冕区的物理条件、结构、动力学与辐射过程,以及AGN的宇宙学演化等科学问题的进一步认识.另外,鉴于EP能够探索一个全新的发现空间(大天区、长时标软X射线的系统监测),将有可能发现前所未见的黑洞吸积现象——宇宙的复杂多样性总是超乎人类的想象.  相似文献   

2.
袁峰 《科学观察》2020,15(4):29-32
正黑洞在宇宙中是普遍存在的。观测表明,宇宙中大部分星系中心都存在一个质量在几十万到几十亿倍的太阳质量的超大质量黑洞,而每个星系中都存在几千万个恒星级质量的黑洞。黑洞吸积是指黑洞周围的气体在黑洞引力的作用下向黑洞下落的物理过程。这一过程会释放出很强的辐射,并伴随着物质外流。现代天体物理的许多重要分支都是以黑洞吸积作为其理论基础的,包括活动星系核、伽玛射线暴、黑洞X  相似文献   

3.
为了研究活动星系核喷流进动的物理机制,从文献中收集到23个有喷流进动周期(P)、B波段绝对星等(Mabs)和黑洞质量(Mbh)数据的活动星系核组成样本.用样本检验吸积盘驱动中心黑洞和喷流进动的盘致进动模型,观测到数据整体上符合理论预期的P、Mabs和Mbh之间的关系,但数据的弥散度较大,吸积盘的黏滞参数需取较大范围才能使理论范围覆盖所有的样本源.喷流进动也可能是由于星系核中心存在超大质量双黑洞.在此双黑洞模型下估算了样本源中双黑洞的距离,并将10个样本源的双黑洞距离和从文献中得到的星系核宽线区尺度对比,显示喷流进动周期大于106年的样本源的双黑洞距离可能大于星系核宽线区尺度.因此通过喷流进动的观测结果可以搜寻超大质量双黑洞候选体和限制双黑洞的参数.高质量的反响映射监测等进一步观测有望检验超大质量双黑洞系统的存在,帮助揭示喷流进动的物理机制.  相似文献   

4.
远红外亮类星体是极亮红外星系中具有I型活动星系核光谱特征的天体,光学光谱研究表明它们在光学波段的辐射主要由中心活动星系核主导,其中心超大质量黑洞的质量为107~108M☉,且有超爱丁顿吸积率.与光学选类星体相比,远红外亮类星体在远红外波段存在明显的辐射超出,这可能是由其核区周围~1 kpc尺度内的星暴活动(恒星形成率约为几百M☉yr-1)加热尘埃造成.对分子气体进行观测发现远红外亮类星体的宿主星系中存在约109~1010M☉的分子气体,这些分子气体可以为黑洞和核球的增长提供"原料".几乎所有远红外亮类星体都处于富气星系并合的晚期,是极亮红外星系向光学选类星体演化的过渡天体.  相似文献   

5.
在星系形成的等级结构模型中,亚星系的结构先形成,之后再不断地通过并合形成越来越大的星系.伴随着星系的并合,星系中心的大质量黑洞也不断经历并合.在富气体星系的并合过程中,气体落入星系的中心,可能触发恒星的形成和黑洞的吸积.黑洞不断通过并合和气体吸积,从小到大形成现在观测到的在不同红移处的超大质量黑洞,因此,在星系的演化过程中,不同红移处必然存在很多大质量黑洞双体系统,甚至三体系统.本文将主要对宇宙中大质量双黑洞的观测和理论做一个简要的评述.美国升级后的激光干涉引力波天文台宣称首次直接探测到了引力波,该引力波源为几十倍太阳质量黑洞双星的并合.这么大质量的致密双黑洞是如何形成的?它们的并合率为什么这么高?本文也会简单提及恒星级双黑洞的形成和演化模型.  相似文献   

6.
紫外波段是星系能谱分布中的重要部分.其包含大量原子、离子和分子的共振线以及研究重要物理过程的连续辐射,提供了理论研究重要的观测限制.在星系研究中,紫外辐射追踪大质量恒星,是测量和理解宇宙中恒星形成历史的重要工具.紫外辐射也可追踪大质量黑洞吸积盘,是理解吸积物理过程的重要手段.其涉及的关键科学问题包括宇宙正午时期的恒星形成历史与星系演化、宇宙重子物质缺失、宇宙再电离能量来源以及星系吸积和外流反馈等.本文重点阐述了紫外深场巡天观测的发展现状及其在星系科学研究中发挥的作用.主要介绍了深场仪器的基本参数、深场观测的目的和任务,以及数据及科学产出,并对国内外正在计划中的未来紫外观测进行了总结和展望.  相似文献   

7.
核心坍缩超新星(Core-Collapse Supernova,CCSN)是大质量恒星演化末期的爆发现象,产生了宇宙中大多数的中子星和恒星级黑洞等致密天体.爆发可能伴随着强磁场中子星或黑洞超吸积引发的剧烈长时标伽马射线暴.CCSN还被认为是宇宙重元素的主要来源之一.本综述介绍了我们近期对CCSN中心黑洞超吸积过程的系列研究成果,主要包括研究了大质量星系中心附近伽马射线暴余辉阶段,因大量暗物质粒子湮灭电子注入而引发的光变和能谱的形态变化,探讨了其作为暗物质探测手段的可能性;研究了坍缩星框架下,中微子主导吸积流外流对核合成的贡献,及对太阳临近空间、(活动)星系等化学组分和演化的影响;最后,从数值模拟角度讨论了CCSN起源的致密天体质量分布,给出了低质量间隙可能起源于CCSN爆发能量分布的结论.  相似文献   

8.
活动星系核是当代天体物理研究中最活跃的领域之一.它们对人们探讨星系的形成和演化、宇宙常数的确定、大尺度结构,甚至宇宙各种背景辐射的起源等方面具有非常重要的意义.耀变体是活动星系核的特殊子类,具有极端的观测性质,包括高光度、高而变化的偏振、大幅度激烈光变、视超光速运动和高能伽玛射线辐射.文章将主要介绍光变和喷流效应的研究进展.密集采样捕捉到很短时标,如OJ 287,3C 273,0716+714在光学波段都获得历史最短的光变时标,200 s的快速光变短时标光变发现在PKS 2155-304的Te V波段,而光变周期的分析,多方法加去除伪周期使得结果更加可靠.光变时标在伽玛波段的Doppler因子估算方面取得进展.  相似文献   

9.
正星系的形成和演化是天体物理的前沿领域。该领域以现代宇宙学提供的大尺度结构形成和演化的成熟理论作为基本框架,通过观测和统计研究宇宙各时期星系的形态结构、星族构成、气体吸积、恒星演化、黑洞成长、化学元素、恒星和气体动力学等物理性质及其演变过程,试图阐明宇宙中各类星系的物理起源、演化关系以及它们与宇宙大尺度结构的物理联系,从而总结出支配星系演化的普适物理规律。目前被普遍接受的星系形成理论认为,星系在暗物质晕中形成和演化,其基本图  相似文献   

10.
Q&A     
《科学世界》2014,(2):102-103
<正>Q:"正常黑洞"的质量范围是多少?10倍太阳质量以下的天体能形成黑洞吗?(读者:Eugaron)A:现在的观测和理论认为,自然界中的黑洞按其质量可以分为几类:位于星系中心的10~6~10~(10)倍太阳质量的超大质量黑洞,由对低亮度的活动星系核的观测推测得到的具有数十倍到百万倍太阳质量的中等质量黑洞;由恒星演化到晚期形成的3.8~20倍左右太阳质量的恒星质量黑洞;在宇宙早期的高密度环境下产生的质量下限为普朗克质量的迷你黑洞,这类黑洞还可能是暗物质的  相似文献   

11.
收集了89个Seyfert星系样本,利用反响映射法和恒星弥散速度法计算了Seyfert星系的黑洞质量,分别研究了Seyfert 1和Seyfert 2星系的黑洞质量与吸积率、热光度和红移之间的相关性,结果发现Seyfert 1星系的黑洞质量与吸积率、热光度和红移之间具有强相关性,Seyfert 2星系的黑洞质量与吸积率之间具有弱的负相关性,与热光度和红移之间具有弱相关性.两类Seyfert星系的区别除了源于吸积盘倾角不同外,还可能与星系的环境、演化和星系核的活动有关.  相似文献   

12.
正超大质量黑洞通常位于大质量星系的中心。天文学家探测它们的唯一方法便是检测其对附近气体和恒星的引力作用。当超大质量黑洞"进食"(吸积)周围的气体和恒星时,会发生光闪烁现象。一项于2021年8月13日发表在Science上的研究显示,对于一个积极进食的黑洞而言,其质量和光闪烁模式之间存在紧密联系。也就是说,我们可以通过检测黑洞的进食过程推算黑洞的质量。  相似文献   

13.
为了考察活动星系核中心黑洞质量对其进动的影响,本文对活动星系核中吸积盘驱使黑洞及其喷流进动的模型即盘致进动模型作了进一步研究.首先,在进动周期-绝对星等关系中代入由观测得到的黑洞质量,结果弥散度有所减小;其次,对此模型中黑洞质量与其进动锥角在演化过程中应有的关系做了理论分析并绘出理论曲线,发现它们之间是反相关的;最后,详细考察黑洞质量和进动锥角观测值的实际分布,发现理论曲线与实际数据是相吻合的.所以,盘致进动模型对黑洞进动现象的解释是比较合理的.  相似文献   

14.
收集了209个活动星系核(46个平谱射电类星体,78个BLLac天体,85个射电星系)样本,估算出爱丁顿吸积率,讨论了黑洞质量、热光度、红移量和爱丁顿吸积率之间的关系,得出了以下结论:(1)活动星系核的一个演化序列为:平谱射电类星体(FsRQ)——BL Lac天体——射电星系(RG)的演化;(2)三类星体的中心黑洞质量、红移量和热光度有较大差异:皆为FSRQ〉BLLac〉RG;(3)吸积率与热光度之间的相关性很强,吸积率的变化将导致热光度的变化。  相似文献   

15.
红移,中心黑洞质量和吸积率是类星体演化的重要参数,通过三种方法计算了405个类星体和Seyfert星系样本的中心黑洞质量,并分析了中心黑洞质量和吸积率的分布,进而验证了:1.类星体-Seyfert星系的演化序列;2.平谱射电类星体(FSRQ)-BL Lac天体-射电星系(RG)的演化序列。  相似文献   

16.
我们从Swift卫星上得到了2005年2月到2008年5月X波段的观测数据,通过对这些数据进行剔除粗差的处理,得到了PKS 1510-089的光变曲线.用Jurkevich方法计算分析PKS 1510-089 X波段的光变周期特性,结果表明其光变周期约为1.84±0.10年.针对这样的光变周期,我们用薄吸积盘理论进行了讨论,并估算了PKS 1510-089的黑洞质量.  相似文献   

17.
越来越多的观测证据表明,位于银河系中心的致密射电源SgrA*是一个质量约为400万个太阳质量的超大质量黑洞.本文介绍在射电、毫米/亚毫米、近红外、X射线波段对Sgr A*的光变观测和理论研究进展.自1974年被射电干涉测量发现伊始,Sgr A*就被检测到时标从天到年不等的射电光变,随着新的观测设备的出现和观测技术的发展,天文学家先后在所有的对银河系中心可观测波段上检测到了Sgr A*的光变,包括在毫米/亚毫米波段的时标为小时的快速光变,近红外波段上时标不到1 h的显著光变,以及空间X射线卫星记录到的幅度变化几十倍以上的巨大耀变.这些光变观测数据可以用于估算产生Sgr A*耀变辐射的区域范围(假设光变是由整个源产生的,辐射区域的尺度/与光变时标τ之间存在线性关系,/≤Cr),并对Sgr A*辐射机制研究提供了间接的限制.近年来开展的一些多波段联测显示,近红外和×射线光变是同步发生的,并且都比射电和毫米波光变先出现,这类时间延迟支持Sgr A*光变的绝热膨胀理论模型.但目前成功的多波段耀变观测非常有限,如何获得从射电厘米波到X射线的Sgr A*光变间的内在关联将是未来几年中Sgr A*光变的一个主要研究方向.  相似文献   

18.
黑洞潮汐瓦解恒星事件(Tidal Disruption Events,TDE)是星系中心黑洞瓦解进入其潮汐瓦解半径内的恒星并吸积恒星碎片物质而产生的一种剧烈辐射耀发现象.TDE的能谱和光变特征中蕴含了中心黑洞和被瓦解的恒星的信息,为我们证实和普查宁静星系中的黑洞,研究其参数、吸积过程和喷流产生、以及核区星际介质等提供了可能.TDE还可能提供中等质量黑洞和双黑洞存在的证据.TDE的观测和理论已成为一个新开辟的天体物理研究领域,但目前的进展受制于探测到事件太少(尤其是在X射线波段),且观测数据普遍质量不高.TDE的发生率很低,要探测大样本的事例需要监测足够大的空间体积.爱因斯坦探针卫星(Einstein Probe,EP)覆盖了0.5–4 keV的软X射线波段(接近TDE耀发时的辐射峰值能段),具有大视场以及高灵敏度,非常利于对TDE的探测.预期爱因斯坦探针卫星每年可以发现约几十至上百例TDE,其中有约10例或更多具有相对论性喷流特征.这将使我们可以获得较为完备、具有统计意义的TDE的样本,为进一步研究黑洞的存在和统计性质、增长和演化、发现中等质量黑洞和大质量双黑洞等提供了新的途径.  相似文献   

19.
活动星系核的演化研究在能量产生、辐射机制等基本问题的研究中占有重要的地位。首先对活动星系核的基本性质及分类进行了简单的介绍,然后根据搜集到的数据,通过分析发光度、中心黑洞质量、吸积率与红移的关系图,进一步支持了活动星系核的演化存在的两个演化序列的观点:一个是平谱射电类星体FSRQ逐步过渡到BL Lac天体,然后过渡到射电星系RG,最后过渡到椭圆星系;另一个是从类星体Quasars过渡Seyfert星系,然后过渡到正常漩涡星系。  相似文献   

20.
利用盘不稳定模型和星爆模型,模拟活动星系核在光学B、V波段的光变,分析光变时光谱斜率的变化情况,并将模拟的结果和观测进行比较,结果表明,这两种模型是定性解释活动星系核光学波段光度、光谱变化的合理模型.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号