首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyanobacteria are abundant throughout most of the world's water bodies and contribute significantly to global primary productivity through oxygenic photosynthesis. This reaction is catalysed by two membrane-bound protein complexes, photosystem I (PSI) and photosystem II (PSII), which both contain chlorophyll-binding subunits functioning as an internal antenna. In addition, phycobilisomes act as peripheral antenna systems, but no additional light-harvesting systems have been found under normal growth conditions. Iron deficiency, which is often the limiting factor for cyanobacterial growth in aquatic ecosystems, leads to the induction of additional proteins such as IsiA (ref. 3). Although IsiA has been implicated in chlorophyll storage, energy absorption and protection against excessive light, its precise molecular function and association to other proteins is unknown. Here we report the purification of a specific PSI-IsiA supercomplex, which is abundant under conditions of iron limitation. Electron microscopy shows that this supercomplex consists of trimeric PSI surrounded by a closed ring of 18 IsiA proteins binding around 180 chlorophyll molecules. We provide a structural characterization of an additional chlorophyll-containing, membrane-integral antenna in a cyanobacterial photosystem.  相似文献   

2.
Bibby TS  Mary I  Nield J  Partensky F  Barber J 《Nature》2003,424(6952):1051-1054
Prochlorococcus, the most abundant genus of photosynthetic organisms, owes its remarkably large depth distribution in the oceans to the occurrence of distinct genotypes adapted to either low- or high-light niches. The pcb genes, encoding the major chlorophyll-binding, light-harvesting antenna proteins in this genus, are present in multiple copies in low-light strains but as a single copy in high-light strains. The basis of this differentiation, however, has remained obscure. Here we show that the moderate low-light-adapted strain Prochlorococcus sp. MIT 9313 has one iron-stress-induced pcb gene encoding an antenna protein serving photosystem I (PSI)--comparable to isiA genes from cyanobacteria--and a constitutively expressed pcb gene encoding a photosystem II (PSII) antenna protein. By comparison, the very low-light-adapted strain SS120 has seven pcb genes encoding constitutive PSI and PSII antennae, plus one PSI iron-regulated pcb gene, whereas the high-light-adapted strain MED4 has only a constitutive PSII antenna. Thus, it seems that the adaptation of Prochlorococcus to low light environments has triggered a multiplication and specialization of Pcb proteins comparable to that found for Cab proteins in plants and green algae.  相似文献   

3.
Lunde C  Jensen PE  Haldrup A  Knoetzel J  Scheller HV 《Nature》2000,408(6812):613-615
Photosynthesis in plants involves two photosystems responsible for converting light energy into redox processes. The photosystems, PSI and PSII, operate largely in series, and therefore their excitation must be balanced in order to optimize photosynthetic performance. When plants are exposed to illumination favouring either PSII or PSI they can redistribute excitation towards the light-limited photosystem. Long-term changes in illumination lead to changes in photosystem stoichiometry. In contrast, state transition is a dynamic mechanism that enables plants to respond rapidly to changes in illumination. When PSII is favoured (state 2), the redox conditions in the thylakoids change and result in activation of a protein kinase. The kinase phosphorylates the main light-harvesting complex (LHCII) and the mobile antenna complex is detached from PSII. It has not been clear if attachment of LHCII to PSI in state 2 is important in state transitions. Here we show that in the absence of a specific PSI subunit, PSI-H, LHCII cannot transfer energy to PSI, and state transitions are impaired.  相似文献   

4.
Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMTi. A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.  相似文献   

5.
Iron is required to produce haem and iron-sulphur (Fe-S) clusters, processes thought to occur independently. Here we show that the hypochromic anaemia in shiraz (sir) zebrafish mutants is caused by deficiency of glutaredoxin 5 (grx5), a gene required in yeast for Fe-S cluster assembly. We found that grx5 was expressed in erythroid cells of zebrafish and mice. Zebrafish grx5 rescued the assembly of grx5 yeast Fe-S, showing that the biochemical function of grx5 is evolutionarily conserved. In contrast to yeast, vertebrates use iron regulatory protein 1 (IRP1) to sense intracellular iron and regulate mRNA stability or the translation of iron metabolism genes. We found that loss of Fe-S cluster assembly in sir animals activated IRP1 and blocked haem biosynthesis catalysed by aminolaevulinate synthase 2 (ALAS2). Overexpression of ALAS2 RNA without the 5' iron response element that binds IRP1 rescued sir embryos, whereas overexpression of ALAS2 including the iron response element did not. Further, antisense knockdown of IRP1 restored sir embryo haemoglobin synthesis. These findings uncover a connection between haem biosynthesis and Fe-S clusters, indicating that haemoglobin production in the differentiating red cell is regulated through Fe-S cluster assembly.  相似文献   

6.
Amunts A  Drory O  Nelson N 《Nature》2007,447(7140):58-63
All higher organisms on Earth receive energy directly or indirectly from oxygenic photosynthesis performed by plants, green algae and cyanobacteria. Photosystem I (PSI) is a supercomplex of a reaction centre and light-harvesting complexes. It generates the most negative redox potential in nature, and thus largely determines the global amount of enthalpy in living systems. We report the structure of plant PSI at 3.4 A resolution, revealing 17 protein subunits. PsaN was identified in the luminal side of the supercomplex, and most of the amino acids in the reaction centre were traced. The crystal structure of PSI provides a picture at near atomic detail of 11 out of 12 protein subunits of the reaction centre. At this level, 168 chlorophylls (65 assigned with orientations for Q(x) and Q(y) transition dipole moments), 2 phylloquinones, 3 Fe(4)S(4) clusters and 5 carotenoids are described. This structural information extends the understanding of the most efficient nano-photochemical machine in nature.  相似文献   

7.
西瓜花叶病毒外壳蛋白基因的克隆与原核表达   总被引:3,自引:1,他引:2  
利用RT-PCR方法获得了西瓜花叶病毒(WMV)陕西分离物外壳蛋白(CP)基因,大小为843 bp.将CP基因克隆到pMD18-T Simple Vector,测序分析发现与各个国家CP核苷酸和氨基酸同源性分别为93.0%~95.0%和96.5%~98.6%.将CP基因定向插入EcoR I/SalI切开的pET30a中,构建了原核表达载体pET30-WCP,转化大肠杆菌BL21.经IPTG诱导2~8 h后,成功表达了分子量约为37 kD的CP蛋白.通过不同时间诱导发现,加入IPTG 4 h后蛋白开始表达,8 h后表达量比较大.以诱导的蛋白为抗原免疫家兔,制备了WMV CP抗血清,ELISA法测其效价为1/6 400,Western blot分析能与CP发生血清学反应.  相似文献   

8.
Peers G  Price NM 《Nature》2006,441(7091):341-344
The supply of some essential metals to pelagic ecosystems is less than the demand, so many phytoplankton have slow rates of photosynthetic production and restricted growth. The types and amounts of metals required by phytoplankton depends on their evolutionary history and on their adaptations to metal availability, which varies widely among ocean habitats. Diatoms, for example, need considerably less iron (Fe) to grow than chlorophyll-b-containing taxa, and the oceanic species demand roughly one-tenth the amount of coastal strains. Like Fe, copper (Cu) is scarce in the open sea, but notably higher concentrations of it are required for the growth of oceanic than of coastal isolates. Here we report that the greater Cu requirement in an oceanic diatom, Thalassiosira oceanica, is entirely due to a single Cu-containing protein, plastocyanin, which--until now--was only known to exist in organisms with chlorophyll b and cyanobacteria. Algae containing chlorophyll c, including the closely related coastal species T. weissflogii, are thought to lack plastocyanin and contain a functionally equivalent Fe-containing homologue, cytochrome c6 (ref. 9). Copper deficiency in T. oceanica inhibits electron transport regardless of Fe status, implying a constitutive role for plastocyanin in the light reactions of photosynthesis in this species. The results suggest that selection pressure imposed by Fe limitation has resulted in the use of a Cu protein for photosynthesis in an oceanic diatom. This biochemical switch reduces the need for Fe and increases the requirement for Cu, which is relatively more abundant in the open sea.  相似文献   

9.
Iron is an essential micronutritional element for plants. In addition to the iron uptake mechanism Strategy I and Strategy II, the vesicle transport process was also found to participate in iron uptake and homeostasis. Herein, a new iron deficiency induced OsSEC27P gene was isolated and investigated in both its localization and its function in transgenic plants. The vesicle-related protein OsSEC27P may play a potential role in enhancing H+ secretion in roots under the iron deficiency conditions.  相似文献   

10.
百合无症病毒衣壳蛋白基因克隆和蛋白分析   总被引:1,自引:0,他引:1  
根据已报道的LSV CP基因序列合成两条寡聚核苷酸引物,模板为感染LSV的百合叶片的总RNA,通过反转录-聚合酶链式反应(RT-PCR)扩增出大小为876bp的LSV CP基因,经测序后,对该基因编码区全长序列及相应的氨基酸序列用生物信息学软件系统进行序列分析及结构功能预测.结果表明:该基因由876个核苷酸组成,编码291个氨基酸;与GeneBank公布的其他LSV分离物的基因序列同源性为93.4%~99.0%,氨基酸同源性为84.8%~99.5%;它含有一个卷曲螺旋结构和多个磷酸化位点,平均疏水值为-0.432;含有Carlaviruses完整的衣壳蛋白保守结构域,二级结构以α-螺旋和无规则卷曲为主.  相似文献   

11.
Marine fixation of atmospheric nitrogen is believed to be an important source of biologically useful nitrogen to ocean surface waters, stimulating productivity of phytoplankton and so influencing the global carbon cycle. The majority of nitrogen fixation in tropical waters is carried out by the marine cyanobacterium Trichodesmium, which supplies more than half of the new nitrogen used for primary production. Although the factors controlling marine nitrogen fixation remain poorly understood, it has been thought that nitrogen fixation is limited by iron availability in the ocean. This was inferred from the high iron requirement estimated for growth of nitrogen fixing organisms and the higher apparent densities of Trichodesmium where aeolian iron inputs are plentiful. Here we report that nitrogen fixation rates in the central Atlantic appear to be independent of both dissolved iron levels in sea water and iron content in Trichodesmium colonies. Nitrogen fixation was, instead, highly correlated to the phosphorus content of Trichodesmium and was enhanced at higher irradiance. Furthermore, our calculations suggest that the structural iron requirement for the growth of nitrogen-fixing organisms is much lower than previously calculated. Although iron deficiency could still potentially limit growth of nitrogen-fixing organisms in regions of low iron availability-for example, in the subtropical North Pacific Ocean-our observations suggest that marine nitrogen fixation is not solely regulated by iron supply.  相似文献   

12.
Phycobilisomes (PBSs) are the main accessory light-harvesting complexes in cyanobacteria and their movement between photosystems (PSs) affects cyclic and respiratory electron transport. However, it remains unclear whether the movement of PBSs between PSs also affects the transthylakoid proton gradient (ΔpH). We investigated the effect of PBS movement on ΔpH levels in a unicellular cyanobacterium Synechocystis sp. strain PCC 6803, using glycinebetaine to immobilize and couple PBSs to photosystem II (PSII) or photosystem I (PSI) by applying under far-red or green light, respectively. The immobilization of PBSs at PSII inhibited decreases in ΔpH, as reflected by the slow phase of millisecond-delayed light emission (ms-DLE) that occurs during the movement of PBSs from PSII to PSI. By contrast, the immobilization of PBSs at PSI inhibited the increase in ΔpH that occurs when PBSs move from PSI to PSII. Comparison of the changes in ΔpH and electron transport caused by the movement of PBSs between PSs indicated that the changes in ΔpH were most likely caused by respiratory electron transport. This will further improve our understanding of the physiological role of PBS movement in cyanobacteria.  相似文献   

13.
D G Macejak  P Sarnow 《Nature》1991,353(6339):90-94
A Robosome-scanning model has been proposed to explain the initiation of eukaryotic messenger RNAs in which binding of the 43S ternary ribosomal subunit near or at the 5' end of the mRNA is facilitated by an interaction between the methylated cap-structure at the end of the mRNA and the cap-binding protein complex eIF-4F. But picornaviral mRNAs do not have a 5' terminal cap structure and are translated by internal ribosome binding. A cellular mRNA, encoding the immunoglobulin heavy-chain binding protein, can be translated in poliovirus-infected cells at a time when cap-dependent translation of host cell mRNAs is inhibited. We report here that the 5' leader of the binding protein mRNA can directly confer internal ribosome binding to an mRNA in mammalian cells, indicating that translation initiation by an internal ribosome-binding mechanism is used by eukaryotic mRNAs.  相似文献   

14.
实验采用PEG介导法转化小麦,用GUS基因作为标志,用荧光法测定Actl-GUS、Emu-GUS、35S-GUS三种质粒转化小麦细胞后的瞬间表达强度,以比较Actl、Emu、35S三种启动子在小表中的表达强度.结果表明,Actl和Emu的强度大致相等,均比35S强.采用Emu为启动子带BYDVCP基因的质粒和经改造过的Act1为启动子带有抗潮霉素选择标记基因的质粒共转化小麦“济南177”的原生质体.转化6d后,用潮霉素进行筛选,最后得到两块抗潮霉素的愈伤组织,转化后4个月,经PCR检测,证明CP基因已整合进一块愈伤组织的细胞基因组中.  相似文献   

15.
《科学通报(英文版)》1999,44(14):1289-1289
Based on the cDNA fragment sequence of vernalization-related gene verc203 cloned by differential screening in our lab, the 5' primer has been designed. The cDNA 3' end of ver203 gene (1 197 bp) has been cloned by the RACE method. And it is identified by Northern blotting that its expression is special in vernalization treatment. After comparing the sequence in the nucleotide sequence databases of Genbank, EMBL and DDBJ, the gene has homology with Hordeum vulgare jesmonate-induced protein gene. It is suggested that this gene might be related to the signal transduction mediated by jamonate.  相似文献   

16.
mRNA differential display (DDRT-PCR) has been used to analyze different human fetal brain tissues of different developmental stages (13- and 33-week). According to the sequence of one EST obtained in this assay, a pair of primers have been designed to screen the arrayed human fetal brain cDNA library. A1 .2-kb cDNA clone has been found. This cDNA consists of an 867 bp open reading frame, a 132 bp 5' untranslated sequence and a 209 bp 3' untranslated sequence with a typical polyadenylation signal. The coding region predicts a protein of 289 amino acids. Its N-terminal of 105 residues is highly homologous to human thioredoxin, while no homology has been found in the databases with its C-terminal of 184 residues. Its N-terminal region also contains the conserved active site sequence CGPC (Cys-Gly-Pro-Cys) of thioredoxin. It was named human Thioredoxin-like gene (hTRXL).  相似文献   

17.
G Lamppa  F Nagy  N H Chua 《Nature》1985,316(6030):750-752
Many of our most important crop plants are monocotyledons, including wheat, corn, rice and barley. No routine transformation system for monocotyledons has been reported, such as the Ti-mediated gene transfer system for dicotyledons facilitated by Agrobacterium tumefaciens. Indirect evidence suggests that Ti-plasmid DNA is transferred into and expressed in A. tumefaciens-infected wound tissues of plants from Liliaceae and Amaryllidaceae, but these observations have not been extended to monocotyledons of greatest agricultural importance. Regeneration of monocotyledons is usually blocked at the callus-stage, further complicating the possibility of exploring the regulated expression of their genes, and thus preventing identification of the regulatory domains of monocotyledonous genes in a homologous nuclear background. To circumvent these difficulties, we investigated whether monocotyledonous genes can be expressed and correctly regulated in dicotyledons. We have introduced a wheat gene (whAB1.6) encoding the major chlorophyll a/b binding protein (Cab) of the light-harvesting complex into the genomes of tobacco (Nicotiana tabacum SR1) and petunia (Petunia hybrida) via a Ti-DNA-mediated gene transfer system which allows the transformed cells to regenerate into whole plants. Here we report for the first time the light-regulated and organ-specific expression of a monocotyledonous gene in transgenic dicotyledonous plants.  相似文献   

18.
Abraham ER  Law CS  Boyd PW  Lavender SJ  Maldonado MT  Bowie AR 《Nature》2000,407(6805):727-730
The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive. In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring. Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly characterized. Here we investigate the development of a discrete phytoplankton bloom, which was initiated by the iron fertilization of a patch of water (7 km in diameter) in the Southern Ocean. Satellite images show a striking, 150-km-long bloom near the experimental site, six weeks after the initial fertilization. We argue that the ribbon-like bloom was produced from the fertilized patch through stirring, growth and diffusion, and we derive an estimate of the stirring rate. In this case, stirring acts as an important control on bloom development, mixing phytoplankton and iron out of the patch, but also entraining silicate. This may have prevented the onset of silicate limitation, and so allowed the bloom to continue for as long as there was sufficient iron. Stirring in the ocean is likely to be variable, so blooms that are initially similar may develop very differently.  相似文献   

19.
The mbl (muscleblind) gene of Drosophila encodes a nuclear protein which contains two Cys3His motifs. The mutation of mbl gene will disturb the differentiation of all the Drosophila's photoreceptors. Primers have been designed according to human EST086139, which is highly homologous to mbl gene. Human fetal brain cDNA library has been screened and a novel cDNA clone has been obtained. The 2595 bp cDNA, designated MBLL (muscleblind-like), contains an open reading frame which encodes 255 amino acids and has 4 Cys3His motifs (GenBank Acc. AF061261). The amino acids sequence shares high homology to Drosophila's mbl. The Northern blot and RNA dot blot hybridization of 43 human adult tissues and 7 fetal tissues show that MBLL is a widely expressed gene, but the expression amounts differ in these tissues.  相似文献   

20.
Iron has a fundamental role in many metabolic processes, including electron transport, deoxyribonucleotide synthesis, oxygen transport and many essential redox reactions involving haemoproteins and Fe-S cluster proteins. Defective iron homeostasis results in either iron deficiency or iron overload. Precise regulation of iron transport in mitochondria is essential for haem biosynthesis, haemoglobin production and Fe-S cluster protein assembly during red cell development. Here we describe a zebrafish mutant, frascati (frs), that shows profound hypochromic anaemia and erythroid maturation arrest owing to defects in mitochondrial iron uptake. Through positional cloning, we show that the gene mutated in the frs mutant is a member of the vertebrate mitochondrial solute carrier family (SLC25) that we call mitoferrin (mfrn). mfrn is highly expressed in fetal and adult haematopoietic tissues of zebrafish and mouse. Erythroblasts generated from murine embryonic stem cells null for Mfrn (also known as Slc25a37) show maturation arrest with severely impaired incorporation of 55Fe into haem. Disruption of the yeast mfrn orthologues, MRS3 and MRS4, causes defects in iron metabolism and mitochondrial Fe-S cluster biogenesis. Murine Mfrn rescues the defects in frs zebrafish, and zebrafish mfrn complements the yeast mutant, indicating that the function of the gene may be highly conserved. Our data show that mfrn functions as the principal mitochondrial iron importer essential for haem biosynthesis in vertebrate erythroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号