共查询到14条相似文献,搜索用时 78 毫秒
1.
通过观察水泥净浆试件在电脉冲和常规浸泡条件下不同龄期的外观变化,并结合扫描电镜(SEM/EDS)、X射线衍射、红外光谱(FTIR)分析侵蚀产物的组成,对试件遭受硫酸盐侵蚀后碳硫硅钙石的生成速度进行了比较.结果表明:电脉冲明显加速了水泥基材料中碳硫硅钙石的生成速度.在电脉冲作用90~120天时试件内部有一个生成碳硫硅钙石的准备期,作用120天后侵蚀产物中出现大量的碳硫硅钙石;常规浸泡1年后,试件内部只检测到生成碳硫硅钙石所需的中间体,并无大量碳硫硅钙石生成. 相似文献
2.
研究了外源性硫酸盐种类对碳硫硅钙石生成的影响.把水泥净浆试件分别浸泡于质量分数为5%的硫酸镁、硫酸钠和硫酸铝溶液中,至设定龄期后用XRD、红外光谱和激光拉曼光谱分析侵蚀产物的矿物组成与微观结构,并测定试件强度.结果显示:经此3种硫酸盐溶液浸泡180 d后的试件均生成了碳硫硅钙石;相比硫酸钠和硫酸铝溶液,硫酸镁溶液所浸泡过试件的碳硫硅钙石衍射峰较强;随着腐蚀不断进行,各试件边角表层起皮剥落,并伴有灰白色泥状物,后期强度亦有明显降低.研究表明,对水泥净浆的碳硫硅钙石侵蚀而言,硫酸镁溶液明显比硫酸钠和硫酸铝溶液显著. 相似文献
3.
水泥-石灰石粉胶凝材料在硫酸盐侵蚀下的破坏机理 总被引:1,自引:0,他引:1
采用5%硫酸钠溶液,对水泥-石灰石粉胶砂试件进行长期浸泡腐蚀试验,测试试件强度,并对试件进行XRD分析和SEM观察.研究结果表明:在硫酸盐侵蚀下,试件劣化是因产生石膏而不是钙矾石造成的;侵蚀反应还造成水化产物碳铝酸钙分解,促使试件腐蚀破坏;水泥-石灰石粉胶凝材料的破坏主要是由石青膨胀和水化产物分解共同造成的;在硫酸盐腐蚀环境中,不宜采用石灰石粉作混合材的复合水泥以及用石灰石粉作掺合料的混凝土. 相似文献
4.
采用偏光显微镜和扫描电镜分析了含镁质类膨胀剂的水泥砂浆在硫酸盐溶液中浸泡1 a后的微观结构,提出了硫酸盐溶液在水泥基材料中的3种迁移方式;通过SEM-EDS分析得出了该水泥基材料被侵蚀后所形成的产物主要是石膏和钙矾石的结果,没有发现硫酸镁和碳硫硅钙石膨胀物形成;在水泥基材料中添加适当种类和掺量的镁质类膨胀剂,水化的与未水化的膨胀剂填充到集料与浆体的间隙内,增大了水泥基材料的密实度,改善了界面结构,提高了水泥基材料抗硫酸盐侵蚀能力. 相似文献
5.
通过腐蚀试验后试件的外观形貌和强度变化、腐蚀物相分析,研究较低环境温度下硅铝质掺合料对含石灰石组分水泥基材料硫酸盐侵蚀的影响。结果表明:随着硅铝质掺合料掺量的增加,含石灰石粉硅酸盐水泥试件外观完整性明显提高,强度损失率逐渐降低;当硅铝质组分掺量为15%、30%时,矿粉对含石灰石组分水泥基材料抗硫酸盐侵蚀的改善作用明显优于相同掺量的粉煤灰;硅铝质组分能够延缓较低环境温度下含石灰石粉硅酸盐水泥的硫酸盐侵蚀,抑制腐蚀物相碳硫硅钙石的生成。 相似文献
6.
从石灰石粉水泥基材料的作用机理、性能、应用技术标准和工程应用等方面对国内外石灰石粉水泥基材料取得的进展进行综述,提出单掺石灰石粉水泥基材料中石灰石粉的作用机理、时变行为和性能调控方法等有待进一步研究的问题。 相似文献
7.
利用SEM-BSE成像模式和EDS-Mapping模式测试了质量分数为2.5%和5.0%Na2SO4溶液侵蚀1年后的水泥净浆、砂浆试样的微观形貌和元素分布.结合图像分析方法,定量描述与分析了试样中硫元素浓度分布规律及硫酸根离子的侵蚀深度.结果表明:不同浓度Na2SO4溶液侵蚀下的净浆、砂浆试样中硫元素浓度分布趋势基本一致,表层浆体硫元素浓度较低,近表层区出现高硫含量带,随后硫元素浓度随深度增加而下降,下降幅度先剧烈后平缓,最终硫元素浓度趋于稳定.硫元素各分布段分别对应于石膏集中生成区、石膏与钙矾石混合生成区、钙矾石集中生成区以及未腐蚀区.高浓度Na2SO4溶液侵蚀后的净浆试样的高硫含量带宽度为550μm,硫元素浓度峰值为6.87%,明显大于低浓度Na2SO4溶液侵蚀后的试样(分别为300μm和1.93%);低浓度Na2SO4溶液侵蚀下,砂浆试样高硫含量带宽度大于同水灰比净浆试样,硫元素浓度峰值略小于净浆试样. 相似文献
8.
利用电脉冲加速外部硫酸根离子向砂浆内部迁移,研究了电脉冲作用下水灰比、侵蚀溶液种类以及电脉冲周期等因素对水泥砂浆硫酸盐侵蚀的影响,并利用扫描电镜观察受硫酸盐侵蚀后砂浆的微观结构.结果表明,硫酸钠溶液浸泡侵蚀180 d后,水灰比为0.3,0.4,0.5的砂浆抗折系数分别为1.03,0.98,0.94,抗压抗蚀系数分别为1.02,0.96,0.90;电脉冲作用下30 d后,各砂浆抗折系数分别变为0.98,0.95,0.90,抗压抗蚀系数分别为0.97,0.96,0.91,试件内部生成了大量的钙矾石,表明电脉冲加速了水泥砂浆的硫酸盐侵蚀.电脉冲作用下,在侵蚀溶液为硫酸镁的试件内部,部分水化硅酸钙(CSH)凝胶已转化为无胶凝性的水化硅酸镁(MSH),导致试件强度下降幅度大于硫酸钠侵蚀.此外,与周期为20 s的电脉冲相比,在周期为10 s的电脉冲作用下,试件受硫酸盐侵蚀的破坏程度更大. 相似文献
9.
已有研究表明电场能够加速水泥基材料硫酸盐侵蚀并可用于快速评价水泥基材料的抗硫酸盐侵蚀性能,但以上研究均是针对电场作用下Na_2SO_4溶液的侵蚀,鲜有研究电场作用下MgSO_4溶液侵蚀行为.本文利用抗蚀系数反映电场对水泥基材料MgSO_4侵蚀程度影响,利用XRD和SEM/EDS分析电场作用下水泥基材料的MgSO_4侵蚀机理.研究表明:电场加速了水泥基材料MgSO_4侵蚀破坏;在电场作用下SO_4~(2-)离子从阴极进入试件内部,首先与Ca(OH)_2反应生成石膏,生成的石膏继续与C_3A的水化产物反应生成钙矾石,当C_3A的水化产物反应完毕,从外界进入的SO_4~(2-)离子继续与Ca(OH)_2反应生成石膏,其侵蚀产物以石膏为主,其次是钙矾石. 相似文献
10.
为考察硫酸盐浓度对水泥基材料性能的影响,设计水灰比为0.5与0.35的砂浆试件,进行全浸泡试验,研究不同硫酸盐浓度对水泥基材料水分传输性能、力学性能与不同深度硫酸根离子传输性能的影响。结果表明:硫酸盐侵蚀后的水泥基材料,吸水量随着侵蚀龄期的增长而增大;水泥基材料的抗折、抗压强度随着硫酸盐侵蚀龄期与侵蚀溶液浓度的增加,呈现先增加后减小的趋势;随着硫酸盐浓度的增加,同深度硫酸根离子浓度随之增加;硫酸盐侵蚀水泥基材料会生成膨胀性产物填充内部孔隙,增加试件力学性能。 相似文献
11.
水泥砂浆TSA侵蚀破坏过程的性能演变 总被引:1,自引:0,他引:1
研究了不同水灰比的掺石灰石粉水泥砂浆在低温硫酸盐溶液中长期浸泡后的外观、强度与矿物成分变化过程,分析了水泥砂浆受TSA侵蚀后的宏、微观性能演变规律.结果表明:TSA侵蚀是一种由外及里、逐渐发展的腐蚀破坏过程,降低水灰比可有效减缓TSA侵蚀破坏速率.从微观角度分析,将TSA侵蚀过程分为四个阶段:离子迁移期,钙矾石生成期,石膏生成期和碳硫硅酸钙生成期.根据力学性能变化与外观破损过程,TSA侵蚀又可分为三个阶段:潜伏期、膨胀开裂期和软化解体期。 相似文献
12.
利用EDTA络合滴定法测量了6种湿法脱硫用灰石中的CaCO3和M gCO3含量,其中CaCO3含量较为稳定,一般都在89%~93%范围内,而M gCO3含量的波动较大,可在1.0%~8.5%之间变化.依照我国电力行业标准(DL/T943—2005),对石灰石反应速率的时间指标进行分析,其值在25~120m in之间变化.结合实验数据和颗粒溶解缩核模型,提出具有明确物理意义的石灰石溶解速率定量分析方法.以溶液温度50℃,pH值5.5为标准溶解条件,6种石灰石颗粒在单位半径(半径为1m)下的溶解速率为0.3~1.0μmol/s.该定量分析方法对烟气湿法脱硫用石灰石的选取与系统的优化具有一定的指导意义. 相似文献
13.
水泥基材料在硫酸盐结晶侵蚀下的劣化行为 总被引:4,自引:0,他引:4
采用水泥砂浆在硫酸钠溶液中半浸泡的试验方法,测试不同配比的砂浆外观形貌、抗压抗折强度等宏观性能,并通过分析砂浆孔结构、孔隙率、微观形貌以及腐蚀产物,探讨半浸泡条件下,硫酸盐结晶对砂浆造成侵蚀破坏的影响因素。研究结果表明:在半浸泡条件下,砂浆表面所生成的白色硫酸钠晶体含量与砂浆的水灰比和掺入的矿物掺合料有关;随着半浸泡时间增加,水泥砂浆表面逐渐被剥蚀,抗压抗折强度先增大后逐渐降低;砂浆中孔径在30nm以上的孔是导致砂浆受到侵蚀的主要孔隙;大量结晶物聚集在砂浆孔隙中并结晶膨胀造成了砂浆的物理结晶侵蚀;掺入适量的活性矿物掺合料能有效降低砂浆中孔径在30nm以上毛细孔的数量,提高砂浆抗硫酸盐结晶侵蚀能力。 相似文献
14.
以硅酸盐水泥为基体,添加矿粉或粉煤灰,借助电阻率测定仪、XRD及SEM等研究了不同稠度条件下的水泥基材料在水化过程中电阻率及水化产物的变化。结果表明,在相同水化条件下,标准稠度的水泥基材料电阻率最高。非标准稠度样品电阻率偏低是因为其低水胶比时水化产物少而高水胶比时微观孔隙多。 相似文献