共查询到16条相似文献,搜索用时 93 毫秒
1.
基于特征选择的神经网络集成方法 总被引:5,自引:0,他引:5
将特征选择技术ReliefF引入Bagging方法中,提出了一种新的神经网络集成方法——ReBag.实验结果表明,本方法的泛化能力优于Bagging方法,与Attribute Bagging方法相当但效率更高. 相似文献
2.
盗窃类案件是公安机关较为棘手的一类犯罪,呈现高发低破态势.提前预测发案情况是预防该类型犯罪的有效途径,因此对预测盗窃犯罪提出了一种以Bagging方法为基础、基于特征选择准确度和差异性双重考量的集成学习算法,根据集成学习器好而不同的原则,构造由异质基学习器集成的特征选择器,实现对影响盗窃犯罪发生因子的有效选择,使用更少维度的特征数据集提升犯罪预测的效率和准确度.实验结果表明,提出的SEFV_Bagging算法具有较好的泛化能力和稳定性,在测试数据上表现出的预测准确度也较为理想,且算法无需根据先验知识设置所选特征子集维数,在盗窃犯罪数据分析预测领域应用中有较为明显优势. 相似文献
3.
特征选择是机器学习和数据挖掘中的一个关键问题,它可以实现数据维度的约减,从而提高学习模型的泛化能力.近年来,为了提高特征选择算法的性能,集成思想被应用到特征选择算法中,即将多个基特征选择器进行集成.本文从提高特征选择算法对大规模数据处理能力的角度出发,提出了一种基于最小最大策略的集成特征选择方法.它主要包括三个步骤:第一,将原始数据根据类别信息划分成多个相对较小的平衡数据子集;第二,在每一个数据子集上进行特征选择,得到多个特征选择结果;第三,对多个特征选择结果依据最小—最大策略进行集成,得出最终的特征选择结果.通过实验对比了该集成策略与其它三种集成策略对分类准确率的影响,结果表明最小最大集成策略在大部分情况下能够获得较好的性能,且基于最小最大策略的集成特征选择可以有效处理大规模数据. 相似文献
4.
5.
为解决不均衡多分类问题,提出一种特征选择和AdaBoost的集成方法。首先,数据进行预处理。利用WSPSO算法进行特征选择,根据特征重要性选取初始粒子构建初始种群,使得算法初期就可以沿着正确的搜索方向开展,减少不相关特征的影响。其次,利用AdaBoost算法对于样本权重较敏感的特点,增强对小类样本的关注度。并且利用AUCarea作为评价标准,相对于其他评价标准,AUCarea具有可视化的优点且对较差AUC更加敏感。最后,与其他几种不均衡分类算法在不平衡数据集上进行对比,结果证明该算法可有效处理不均衡多分类问题。 相似文献
6.
融合样本选择与特征选择的AdaBoost支持向量机集成算法 总被引:2,自引:0,他引:2
为提高AdaBoost分类器集成算法的分类精确度并简化分类系统的复杂度,提出一种融合样本选择与特征选择的AdaBoost支持向量机集成算法(IFSelect-SVME)。该算法在AdaBoost算法的每个循环中利用加权免疫克隆样本选择算法进行样本选择,并用互信息顺序向前特征选择算法进行特征选择,再利用每个循环优化选择得到的特征样本子集训练个体SVM分类器,并对其进行加权集成,生成最终的决策系统。对实验所用9组UCI数据集的仿真结果表明:与支持向量机集成(SVME)算法相比,IFSelect-SVME算法的正确分类率有所提高,且样本数可减少30.8%~80.0%,特征数可减少32.2%~81.5%,简化了集成结构,缩短了测试样本的分类时间,所得到的分类系统具有更好的分类精度。 相似文献
7.
在大脑胶质瘤诊断数据集中.病例样本数通常比正常样本数要少,由此引发了数据不均衡问题下病例诊断的问题.此外,在大脑胶质瘤数据集中有一些冗余甚至是不相关的特征,这些特征降低了学习器的泛化能力.为解决这类问题,提出一种基于互信息特征选择的EasyEnsemble算法来解决大脑胶质瘤诊断中的数据不均衡问题.在UCI数据集和大脑胶质瘤数据集上的实验结果表明新算法提高了分类器在不均衡数据集上的分类性能和预报能力. 相似文献
8.
针对实际模式识别系统中样本特征常具有的连续值属性、高维性、强相关性和冗余性等影响分类效果的问题,在广义邻域粗集模型下提出一种集成特征选择及其选择性集成算法.该算法先提取样本特征并利用所提出的马氏距离分布熵评估其重要度,再基于特征重要度构建广义邻域粗集模型,并在此模型上以特征重要度为启发式信息设计基于蚁群算法的属性约简算法,然后通过改变广义邻域粗集模型参数的方式获得更多具有更大差异性的基分类器,最后利用主成分分析法对产生的基分类器进行选择性集成.模拟电路故障诊断结果表明,该算法比AdaBoost等算法取得的分类精度至少提高了2.6%. 相似文献
9.
随着大数据、人工智能以及高性能计算的快速发展, 数据驱动的新材料研发成为研究热点. 在对材料数据进行数据挖掘的过程中, 需要对特征集合进行预处理, 通过减少无关冗余特征, 不仅可以避免模型过拟合, 还能提高模型的可解释性. 基于此, 提出了一种基于强化学习的特征选择(feature selection based on reinforcement learning, FSRL) 算法, 将封装式特征选择抽象成机器学习模型和环境互动的过程, 并根据利益最大化准则将对应特征加入特征子集中. 同时, 为了提高模型的预测精度, 还提出一种基于符号变换的特征构造方法来生成新的特征. 最后, 将所提出方法应用到非晶合金材料的分类预测任务和铝基复合材料的回归任务中. 实验结果表明, FSRL 算法的分类准确率最高提升了 2.8%, 而在回归任务中, 基于特征构造的 FSRL 算法使得预测精度最高提升了 22.9%. 相似文献
10.
为有效识别内含子 miRNA 及其宿主基因共表达模式, 提出了一种基于集成特征选择的识别方法。 首先
使用基于支持度的集成特征选择算法, 获取相关性和稳定性较高的特征子集, 再使用封装式特征选择方法结合
FCBF(Fast Correlation-Based Filter)搜索策略进一步去除冗余特征和弱相关的特征, 获得最优的特征子集。 实验
结果表明, 该方法融合了多个特征选择方法的优点, 能提高学习模型的泛化能力并能有效识别内含子 miRNA
及其宿主基因的共表达模式。 相似文献
11.
基于高维数据的特征选择性, 运用功能扰动集成方法, 对4种不同特征选择器的结果进行集成, 得到了分类精度高且稳定性较好的特征子集. 在基因数据集上与原有算法进行性能对比实验, 结果表明, 多特征选择混合算法可使特征选择的结果间具有互补性, 从而有效提高特征选择的稳定性和分类精度. 相似文献
12.
短期光伏功率预测对于电网稳定运行具有重要意义。为了解决单一模型预测精度不佳的情况,提出了一种在Stacking集成学习框架下融合Bagging和Boosting算法的短期光伏功率预测模型。首先,引入Copula函数的相关性分析和轻量级梯度提升机的特征贡献度计算来进行特征筛选;然后,选取泛化性能较优的模型作为基学习器,并采用贝叶斯优化算法来对基学习器模型参数进行优化,最后,定义一个超级学习器,采用5折交叉验证,将基学习器与元学习器封装到超级学习器中训练。算例结果表明,在不同季节和不同天气条件下,Stacking模型相较于单一模型有着更高的预测精度。 相似文献
13.
《信阳师范学院学报(自然科学版)》2017,(3):469-473
研究表明,具有较大边际分别的组合分类器泛化性能更高.根据该结论,论文构造了一个新的基于边际的度量指标(MM)以充分考虑基分类器和组合分类器的分类能力,进而提出了一种新的组合分类器选择方法.该方法初始化组合分类器为空(或满),迭代的加入(或移除)具有最大(或最小)MM值的分类器,以降低组合分类器规模并提高它的分类准确率.在随机选择的24个UCI数据集上的实验表明,与其他一些高级的贪心组合选择算法相比,该方法具有更好的泛化能力. 相似文献
14.
储层是油藏地质建模的主要对象,储层属性参数的预测是建模的重要基础和主要难点之一。利用机器学习方法建立预测模型是目前研究的一个热点。针对单一机器学习方法在孔隙度预测方面存在的容错率低、过拟合等缺点,提出了融合岩性分类进行选择性集成学习建立预测模型的方法。该方法首先使用支持向量机进行岩性分类,并将岩性分类结果作为孔隙度选择性集成预测模型的输入。然后在研究分析典型机器学习方法的基础上,通过主成分方法分析法从支持向量回归、径向基(radial basis function,RBF)神经网络、随机森林、岭回归和K近邻回归等经典模型中选择出一组表现优异的个体学习模型组成集成学习模型,个体在集成模型中的权重由"主成分权重平均"法获得,最终采用加权平均法得到集成学习模型的输出。该方法考虑了岩性对孔隙度的影响,克服了单一模型存在的不足,模型的泛化能力强。研究结果表明,该方法的预测精度明显优于其他单一机器学习方法,适应性好。 相似文献
15.
赵玮 《华侨大学学报(自然科学版)》2017,(1):105-108
针对机器学习聚类模型在特征选择时存在的问题,首先,对特征选择在聚类模型中的适用性进行分析并对其进行调整和改进.然后,基于R语言中的递归特征消除(RFE)特征选择方法和Boruta特征选择方法进行特征选择算法设计.最后,应用聚类内部有效性指标,对在线品牌忠诚度聚类模型优化结果进行分析,进而对特征选择方法进行比较研究.结果表明:Boruta特征选择方法更具优势. 相似文献
16.
集成学习可以提高分类器的泛化性能,这种方法已经成为机器学习的重要研究方向之一.通常,集成学习主要由2部分构成,即个体生成方法及结论生成方法.从集成学习的差异性角度出发,对集成学习中个体的构造方法及结论生成方法进行了分析与研究,对集成学习中存在的问题及未来的研究方向进行了探讨. 相似文献