首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Vasoregulation by the beta1 subunit of the calcium-activated potassium channel   总被引:20,自引:0,他引:20  
Small arteries exhibit tone, a partially contracted state that is an important determinant of blood pressure. In arterial smooth muscle cells, intracellular calcium paradoxically controls both contraction and relaxation. The mechanisms by which calcium can differentially regulate diverse physiological responses within a single cell remain unresolved. Calcium-dependent relaxation is mediated by local calcium release from the sarcoplasmic reticulum. These 'calcium sparks' activate calcium-dependent potassium (BK) channels comprised of alpha and beta1 subunits. Here we show that targeted deletion of the gene for the beta1 subunit leads to a decrease in the calcium sensitivity of BK channels, a reduction in functional coupling of calcium sparks to BK channel activation, and increases in arterial tone and blood pressure. The beta1 subunit of the BK channel, by tuning the channel's calcium sensitivity, is a key molecular component in translating calcium signals to the central physiological function of vasoregulation.  相似文献   

2.
采用配位化合物铁氰化钾作为氧化剂,利用化学氧化法制备水溶性较好、比表面积较大的聚苯胺刺状微球.考察不同种类氧化剂、氧化剂与单体比例等因素对产物形貌、电导率及产率的影响.通过FT-IR、XRD、SEM等测试技术表征合成产物.结果表明:在室温条件下,铁氰化钾/苯胺的物质的量比为1.4∶1,电导率最高达0.25 S/cm.在...  相似文献   

3.
4.
The active site of potassium (K+) channels catalyses the transport of K+ ions across the plasma membrane--similar to the catalytic function of the active site of an enzyme--and is inhibited by toxins from scorpion venom. On the basis of the conserved structures of K+ pore regions and scorpion toxins, detailed structures for the K+ channel-scorpion toxin binding interface have been proposed. In these models and in previous solution-state nuclear magnetic resonance (NMR) studies using detergent-solubilized membrane proteins, scorpion toxins were docked to the extracellular entrance of the K+ channel pore assuming rigid, preformed binding sites. Using high-resolution solid-state NMR spectroscopy, here we show that high-affinity binding of the scorpion toxin kaliotoxin to a chimaeric K+ channel (KcsA-Kv1.3) is associated with significant structural rearrangements in both molecules. Our approach involves a combined analysis of chemical shifts and proton-proton distances and demonstrates that solid-state NMR is a sensitive method for analysing the structure of a membrane protein-inhibitor complex. We propose that structural flexibility of the K+ channel and the toxin represents an important determinant for the high specificity of toxin-K+ channel interactions.  相似文献   

5.
Crystal structure and mechanism of a calcium-gated potassium channel   总被引:54,自引:0,他引:54  
Jiang Y  Lee A  Chen J  Cadene M  Chait BT  MacKinnon R 《Nature》2002,417(6888):515-522
Ion channels exhibit two essential biophysical properties; that is, selective ion conduction, and the ability to gate-open in response to an appropriate stimulus. Two general categories of ion channel gating are defined by the initiating stimulus: ligand binding (neurotransmitter- or second-messenger-gated channels) or membrane voltage (voltage-gated channels). Here we present the structural basis of ligand gating in a K(+) channel that opens in response to intracellular Ca(2+). We have cloned, expressed, analysed electrical properties, and determined the crystal structure of a K(+) channel (MthK) from Methanobacterium thermoautotrophicum in the Ca(2+)-bound, opened state. Eight RCK domains (regulators of K(+) conductance) form a gating ring at the intracellular membrane surface. The gating ring uses the free energy of Ca(2+) binding in a simple manner to perform mechanical work to open the pore.  相似文献   

6.
Zhong H  Molday LL  Molday RS  Yau KW 《Nature》2002,420(6912):193-198
Cyclic nucleotide-gated (CNG) channels are crucial for visual and olfactory transductions. These channels are tetramers and in their native forms are composed of A and B subunits, with a stoichiometry thought to be 2A:2B (refs 6, 7). Here we report the identification of a leucine-zipper-homology domain named CLZ (for carboxy-terminal leucine zipper). This domain is present in the distal C terminus of CNG channel A subunits but is absent from B subunits, and mediates an inter-subunit interaction. With cross-linking, non-denaturing gel electrophoresis and analytical centrifugation, this CLZ domain was found to mediate a trimeric interaction. In addition, a mutant cone CNG channel A subunit with its CLZ domain replaced by a generic trimeric leucine zipper produced channels that behaved much like the wild type, but less so if replaced by a dimeric or tetrameric leucine zipper. This A-subunit-only, trimeric interaction suggests that heteromeric CNG channels actually adopt a 3A:1B stoichiometry. Biochemical analysis of the purified bovine rod CNG channel confirmed this conclusion. This revised stoichiometry provides a new foundation for understanding the structure and function of the CNG channel family.  相似文献   

7.
Penna A  Demuro A  Yeromin AV  Zhang SL  Safrina O  Parker I  Cahalan MD 《Nature》2008,456(7218):116-120
Ca(2+)-release-activated Ca(2+) (CRAC) channels underlie sustained Ca(2+) signalling in lymphocytes and numerous other cells after Ca(2+) liberation from the endoplasmic reticulum (ER). RNA interference screening approaches identified two proteins, Stim and Orai, that together form the molecular basis for CRAC channel activity. Stim senses depletion of the ER Ca(2+) store and physically relays this information by translocating from the ER to junctions adjacent to the plasma membrane, and Orai embodies the pore of the plasma membrane calcium channel. A close interaction between Stim and Orai, identified by co-immunoprecipitation and by F?rster resonance energy transfer, is involved in the opening of the Ca(2+) channel formed by Orai subunits. Most ion channels are multimers of pore-forming subunits surrounding a central channel, which are preassembled in the ER and transported in their final stoichiometry to the plasma membrane. Here we show, by biochemical analysis after cross-linking in cell lysates and intact cells and by using non-denaturing gel electrophoresis without cross-linking, that Orai is predominantly a dimer in the plasma membrane under resting conditions. Moreover, single-molecule imaging of green fluorescent protein (GFP)-tagged Orai expressed in Xenopus oocytes showed predominantly two-step photobleaching, again consistent with a dimeric basal state. In contrast, co-expression of GFP-tagged Orai with the carboxy terminus of Stim as a cytosolic protein to activate the Orai channel without inducing Ca(2+) store depletion or clustering of Orai into punctae yielded mostly four-step photobleaching, consistent with a tetrameric stoichiometry of the active Orai channel. Interaction with the C terminus of Stim thus induces Orai dimers to dimerize, forming tetramers that constitute the Ca(2+)-selective pore. This represents a new mechanism in which assembly and activation of the functional ion channel are mediated by the same triggering molecule.  相似文献   

8.
Starace DM  Bezanilla F 《Nature》2004,427(6974):548-553
Voltage-dependent potassium channels are essential for the generation of nerve impulses. Voltage sensitivity is conferred by charged residues located mainly in the fourth transmembrane segment (S4) of each of the four identical subunits that make up the channel. These charged segments relocate when the potential difference across the membrane changes, controlling the ability of the pore to conduct ions. In the crystal structure of the Aeropyrum pernix potassium channel KvAP, the S4 and part of the third (S3B) transmembrane alpha-helices are connected by a hairpin turn in an arrangement termed the 'voltage-sensor paddle'. This structure was proposed to move through the lipid bilayer during channel activation, transporting positive charges across a large fraction of the membrane. Here we show that replacing the first S4 arginine by histidine in the Shaker potassium channel creates a proton pore when the cell is hyperpolarized. Formation of this pore does not support the paddle model, as protons would not have access to a lipid-buried histidine. We conclude that, at hyperpolarized potentials, water and protons from the internal and external solutions must be separated by a narrow barrier in the channel protein that focuses the electric field to a small voltage-sensitive region.  相似文献   

9.
该文分析了核子-核子系统EST可分离势近似方法的在壳及离壳性质,计算了3S1-3D1道的相移值及半离壳函数值,与实验数据比较,指出了EST方法的局限性.由于EST方法缺陷在于将势模型半离壳R矩阵元供作可分离势的形状因子,从而提出克服缺陷的方案,对可分近似作出相应的改进.  相似文献   

10.
11.
D M Papazian  L C Timpe  Y N Jan  L Y Jan 《Nature》1991,349(6307):305-310
Voltage-dependent potassium, sodium and calcium ion channels may share a common mechanism of activation, in which the conserved S4 sequence acts as the primary voltage sensor. Site-directed mutagenesis of the S4 sequence of the Shaker potassium channel and electrophysiological analysis suggest that voltage-dependent activation involves the S4 sequence but is not solely due to electrostatic interactions.  相似文献   

12.
无穷多个函数的随机动力系统   总被引:1,自引:0,他引:1  
本文考虑无穷多个函数的随机动力系统,并研究这种动力系统的动力学性质。  相似文献   

13.
本文报告了氧化铝固载的BF_3与AlCl_3对正已烷、正庚烷等直链烷烃的异构化反应的催化作用.发现固载BF_3具有气态BF_3的一些催化性能,固载BF_3/AlCl_3可在温和条件下催化正已烷、正庚烷等的异构化反应.不同的固载BF_3/AlCl_3比例可导致不同的催化活性.加入适量CuSO_4可大大提高转化率.  相似文献   

14.
探讨电压门控钾离子通道在乳腺上皮细胞增殖过程中的作用.通过MTT法检测了钾通道阻断剂TEA、电压门控钾通道阻断剂4-AP对人乳腺上皮细胞MCF10A增殖的影响并与乳腺癌细胞MCF7作了比较,免疫印迹方法观察了电压门控钾通道Kv1.2、Kv1.5的表达.研究发现,两种钾离子通道阻断剂对人乳腺细胞和乳腺癌细胞增殖的影响均呈剂量依赖性关系.经5 mmol/L TEA 处理72 h后,MCF10A细胞的生长抑制率为21.67%,而MCF7细胞的生长抑制率为41.36%;5 mmol/L 4-AP处理72 h后,MCF10A的生长抑制率为29.24%,而MCF7细胞的生长抑制率为40.24%.Kv1.2在MCF10A和MCF7中表达没有变化,而Kv1.5在MCF10A细胞中的表达明显高于MCF7细胞.提示电压门控钾离子通道在乳腺细胞的增殖中起重要作用,其中Kv1.5 可能和乳腺细胞的转化密切相关.  相似文献   

15.
The co-ordinated function of effector and accessory cells in the immune system is assisted by adhesion molecules on the cell surface that stabilize interactions between different cell types. Leukocyte function-associated antigen 1 (LFA-1) is expressed on the surface of all white blood cells and is a receptor for intercellular adhesion molecules (ICAM) 1 and 2 (ref. 3) which are members of the immunoglobulin superfamily. The interaction of LFA-1 with ICAMs 1 and 2 provides essential accessory adhesion signals in many immune interactions, including those between T and B lymphocytes and cytotoxic T cells and their targets. In addition, both ICAMs are expressed at low levels on resting vascular endothelium; ICAM-1 is strongly upregulated by cytokine stimulation and plays a key role in the arrest of leukocytes in blood vessels at sites of inflammation and injury. Recent work has indicated that resting leukocytes express a third ligand, ICAM-3, for LFA-1 (refs 11, 12). ICAM-3 is potentially the most important ligand for LFA-1 in the initiation of the immune response because the expression of ICAM-1 on resting leukocytes is low. We report the expression cloning of a complementary DNA, pICAM-3, encoding a protein constitutively expressed on all leukocytes, which binds LFA-1. ICAM-3 is closely related to ICAM-1, consists of five immunoglobulin domains, and binds LFA-1 through its two N-terminal domains.  相似文献   

16.
Kim SJ  Kim YS  Yuan JP  Petralia RS  Worley PF  Linden DJ 《Nature》2003,426(6964):285-291
Group I metabotropic glutamate receptors (consisting of mGluR1 and mGluR5) are G-protein-coupled neurotransmitter receptors that are found in the perisynaptic region of the postsynaptic membrane. These receptors are not activated by single synaptic volleys but rather require bursts of activity. They are implicated in many forms of neural plasticity including hippocampal long-term potentiation and depression, cerebellar long-term depression, associative learning, and cocaine addiction. When activated, group I mGluRs engage two G-protein-dependent signalling mechanisms: stimulation of phospholipase C and activation of an unidentified, mixed-cation excitatory postsynaptic conductance (EPSC), displaying slow activation, in the plasma membrane. Here we report that the mGluR1-evoked slow EPSC is mediated by the TRPC1 cation channel. TRPC1 is expressed in perisynaptic regions of the cerebellar parallel fibre-Purkinje cell synapse and is physically associated with mGluR1. Manipulations that interfere with TRPC1 block the mGluR1-evoked slow EPSC in Purkinje cells; however, fast transmission mediated by AMPA-type glutamate receptors remains unaffected. Furthermore, co-expression of mGluR1 and TRPC1 in a heterologous system reconstituted a mGluR1-evoked conductance that closely resembles the slow EPSC in Purkinje cells.  相似文献   

17.
探讨了通过调节KIO3-KI混合试液酸度、用氧化还原滴定法分别测定这两种组分含量的新方法.该方法无需加热,相对误差好于以往方法,相对标准偏差也较满意.  相似文献   

18.
探讨了通过调节KIO3-KI混合试液酸度、用氧化还原滴定法分别测定这两种组分含量的新方法.该方法无需加热,相对误差好于以往方法,相对标准偏差也较满意.  相似文献   

19.
Two defining functional features of ion channels are ion selectivity and channel gating. Ion selectivity is generally considered an immutable property of the open channel structure, whereas gating involves transitions between open and closed channel states, typically without changes in ion selectivity. In store-operated Ca(2+) release-activated Ca(2+) (CRAC) channels, the molecular mechanism of channel gating by the CRAC channel activator, stromal interaction molecule 1 (STIM1), remains unknown. CRAC channels are distinguished by a very high Ca(2+) selectivity and are instrumental in generating sustained intracellular calcium concentration elevations that are necessary for gene expression and effector function in many eukaryotic cells. Here we probe the central features of the STIM1 gating mechanism in the human CRAC channel protein, ORAI1, and identify V102, a residue located in the extracellular region of the pore, as a candidate for the channel gate. Mutations at V102 produce constitutively active CRAC channels that are open even in the absence of STIM1. Unexpectedly, although STIM1-free V102 mutant channels are not Ca(2+)-selective, their Ca(2+) selectivity is dose-dependently boosted by interactions with STIM1. Similar enhancement of Ca(2+) selectivity is also seen in wild-type ORAI1 channels by increasing the number of STIM1 activation domains that are directly tethered to ORAI1 channels, or by increasing the relative expression of full-length STIM1. Thus, exquisite Ca(2+) selectivity is not an intrinsic property of CRAC channels but rather a tuneable feature that is bestowed on otherwise non-selective ORAI1 channels by STIM1. Our results demonstrate that STIM1-mediated gating of CRAC channels occurs through an unusual mechanism in which permeation and gating are closely coupled.  相似文献   

20.
J G Seidman  P Leder 《Nature》1980,286(5775):779-783
A mutant immunoglobulin gene has been formed by an abnormal (non V/J) recombination event such that abnormal RNA splicing is required to form a mutant light chain. The structure of the gene suggests that the small palindrome thought to be involved in V/J joining also provides the basis for this abnormal DNA recombination and that the absence of a J segment and RNA splice signal allows an abnormal RNA splicing reaction to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号