首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
为解决4,6–二硝基邻仲丁基苯酚(DNBP)生产过程中的废水污染问题,通过萃取法对该废水进行预处理.萃取最佳实验条件:利用磷酸三丁酯作为萃取剂,煤油为稀释剂,萃取剂的体积分数为70%,萃取时间为30,min,V(废水)∶V(萃取剂)=5∶1,原水不调节pH,直接进行萃取,萃取级数选择两级.在此条件下COD去除率达到80%.同时,NaOH溶液质量分数为20%,V(有机相)∶V(NaOH溶液)=3∶1时,反萃效果最好.  相似文献   

2.
由N235与路易斯碱三辛基氧膦(TOPO)组成协同萃取体系,对碱性氰化浸金贵液中金(Ⅰ)协同萃取和反萃进行了研究.研究了有机相中N235含量、水相平衡pH、相比等因素对金(Ⅰ)萃取率的影响,考察了反萃液中氢氧化钠液浓度对负载金有机相的反萃效果.结果表明,采用有机相为10% 10%协萃剂TOPO 80%煤油的协萃体系,对pH=9~10和初始金(Ⅰ)质量浓度ρo=10.87 mg/L碱性氰化浸金贵液进行萃取时,经一级萃取后,萃取率可高达98%左右;同时,采用0.05~0.1 mol/L的氢氧化钠溶液可对负载有机相进行反萃,反萃率达到91%以上.  相似文献   

3.
由N235与路易斯碱三辛基氧膦(TOPO)组成协同萃取体系,对碱性氰化浸金贵液中金(I)协同萃取和反萃进行了研究.研究了有机相中N235含量、水相平衡pH、相比等因素对金(I)萃取率的影响,考察了反萃液中氢氧化钠液浓度对负载金有机相的反萃效果.结果表明,采用有机相为10%+10%协萃剂TOPO+80%煤油的协萃体系,对pH=9~10和初始金(I)质量浓度ρO=10.87 mg/L碱性氰化浸金贵液进行萃取时,经一级萃取后,萃取率可高达98%左右;同时,采用0.05~0.1 mol/L的氢氧化钠溶液可对负载有机相进行反萃,反萃率达到91%以上.  相似文献   

4.
利用三辛基甲基氯化铵为萃取剂,考察了不同烷烃稀释剂与不同醇类助溶剂组合对废水中柠檬酸镍的萃取效果及反萃取剂盐酸溶液对镍的反萃取效果.探讨了废水pH、萃取剂质量浓度、助溶荆体积分数、相体积比(废水相与有机相体积比)、萃取时间及反萃取剂浓度等工艺条件对萃取效果的影响.结果表明,煤油与癸醇组合对废水中柠檬酸的镍萃取效果最佳.在废水pH为9.00,萃取剂质量浓度为35%,助溶剂体积分数为20%,水相与有机相体积比为1时,室温下萃取30min,萃取率可达75.41%;用0.5mol/L盐酸溶液对萃取反应后有机相中的镍进行反萃取,反萃取率可达94.50%.  相似文献   

5.
针对现行的湿法炼锌渣中提取锗的研究现状,采用新型萃取剂HBL101从锌置换渣的高酸浸出液中直接萃取锗,考察了料液酸度、萃取剂体积分数、萃取温度、萃取时间和相比对萃取的影响以及氢氧化钠质量浓度、反萃温度、反萃时间和反萃相比对反萃的影响,并对萃取剂转型条件进行了研究.实验表明:有机相组成为30% HBL101+70%磺化煤油(体积分数)作为萃取剂,料液酸度为113.2 g·L-1 H2 SO4,其最佳萃取条件为萃取温度25℃,萃取时间20 min,相比O/A=1:4.经过五级逆流萃取,锗萃取率达到98.57%.负载有机相用150 g·L-1 NaOH溶液可选择性反萃锗得到高纯度锗酸钠溶液,其最佳反萃条件为反萃温度25℃,反萃时间25 min,相比O/A=4:1.经过五级逆流反萃,反萃率可达到98.1%.反萃锗后负载有机相再用200 g·L-1硫酸溶液反萃共萃的铜并转型,控制反萃温度25℃,反萃时间20 min,O/A=2:1.经过五级逆流反萃,铜反萃率可达到99.5%并完成转型,萃取剂返回使用.  相似文献   

6.
采用溶剂萃取法脱除铜电解液中的杂质,通过在铜电解液中加入助萃剂研究萃取剂N235对Sb和Bi的萃取性能。考察N235体积分数、助萃剂浓度、有机相与水相的体积比(相比)、萃取时间等因素对Sb和Bi萃取率的影响。研究结果表明:在有机相组成(体积分数)为20%N235+10%异辛醇+70%磺化煤油,助萃剂浓度为0.1 mol/L,相比为1:1时,铜电解液经单级萃取,Sb和Bi的萃取率(质量分数)分别为56.1%和96.6%。在有机相组成和助萃剂浓度保持不变的情况下,相比为2:1时,铜电解液经过7级逆流萃取,Sb的萃取率为86.0%,Bi的萃取率为97.1%。7级逆流萃取平衡有机相经氨水沉淀反萃—水洗—酸化处理后,Sb和Bi总反萃率可达98.4%和96.5%,有机相可循环使用。  相似文献   

7.
在常温下,以民用煤油作稀释剂,用磷酸三丁酯(TBP)萃取处理镀铬废水。经4—5级萃取,可使水相中Cr~(6+)由70mg/L降至国家排放标准以下。有机相用稀碱溶液经2—3级反萃取再生,Cr~(6+)完全回收利用,这对环境保护大有好处。  相似文献   

8.
从主要含锌、镉、铁和铅的菱锌矿盐酸浸出液中选择性地萃取锌,提出了浸取-萃取-电积提锌的湿法炼锌过程。锌由75%(v/v)的磷酸三丁酯(TBP)-煤油溶液从浸出液中选择性地萃入有机相、负载的有机相分别用电解液和废电解液洗涤和反萃,反萃液可直接用于电解从而获得高纯的金属锌。  相似文献   

9.
以p204为萃取剂,260号磺化煤油为稀释剂,从铜转炉烟灰酸浸净化液中萃取分离锌.考察萃取振荡时间、p204的体积分数、相比率(O/A)以及料液初始pH值对锌萃取率的影响.通过正交实验和单因素分析确定p204从铜转炉烟灰酸浸净化液中萃取分离锌的主要影响因素和最佳工艺条件.研究表明:室温条件下,当萃取平衡时间为6 min,p204的体积分数为30%,相比率(O/A)为2∶1,料液初始pH值为3.0时,锌的一级萃取率达到57.32%.经4级错流萃取可以将料液中锌的质量浓度降低到0.027 g/L,锌萃取率达到97.26%.负载有机相经2 mol/L的H2SO4反萃,锌可完全反萃.  相似文献   

10.
络合萃取法提取稀溶液中丙酸的研究   总被引:2,自引:0,他引:2  
采用络合萃取法提取稀溶液中的丙酸,研究了络合萃取及反萃取的工艺条件。研究表明:以正辛醇和甲苯的混合物(1/3,v/v)为稀释剂,1mol/L磷酸三丁酯(TBP)为络合剂,按体积比为1:1的相比,经30min萃取,丙酸的萃取率为67.70%。经3级错流萃取可使萃取率达到97%以上。通过正交试验得出,以0.30mol/L的NaOH溶液为反萃剂,萃取相与反萃相体积比为1:2,反萃时间90min,反萃率可达90.31%。  相似文献   

11.
从盐湖卤水中萃取锂   总被引:8,自引:0,他引:8  
选取磷酸三丁酯(TBP)为萃取剂,200号溶剂汽油为稀释剂,氯化铁(FeCl3.6H2O)为共萃取剂,从青海盐湖含锂卤水中萃取锂,并对TBP质量分数对萃取率的影响,相比对萃取率及分配比的影响进行研究。研究结果表明:共萃剂FeCl3在萃取过程中作用明显,同时,水相氢离子浓度是非常重要的影响因素,适当的酸度既可以保证锂离子进入有机相,减少氢离子与有机溶剂络合的机会,又可以保证铁离子在溶液中不发生水解;最佳萃取工艺条件如下:TBP质量分数为60%,萃取相比(O/A)为1.5,n(Fe3 )/n(Li )为1.3,水相氢离子浓度为0.05 mol/L。在此条件下,锂的萃取率可达到80%,锂、镁分离效果较好,萃取液经洗涤、反萃取和深度除镁后,可制备高纯度碳酸锂。  相似文献   

12.
采用一种新的二元协萃体系P204/4PC对萃取分离镍与锰、镁、钙进行了研究.考察了有机相配比、平衡pH、平衡时间等因素对萃取分离的影响,并绘制了镍萃取与反萃等温线.结果表明,采用1.25mol/L 4PC(L)+0.25mol/L P204(HA)组成的有机相,经过5级模拟逆流萃取,镍的萃取率达到98.7%,其他杂质金属的萃取率基本都在5%以下.负载有机相经过三级逆流反萃,镍的反萃率达到98.2%,反萃后有机相中镍的质量浓度小于0.1g/L.  相似文献   

13.
十四烷基二甲基苄基氯化铵萃取金的研究   总被引:4,自引:3,他引:1  
用放射性核素198Au示踪法研究了季铵盐十四烷基二甲基苄基氯化铵(TDMBA)从碱性氰化液中萃取金,考察了水相金浓度、助溶剂含量、萃取时间、季铵盐与KAu(CN)2摩尔比值nr等因素对萃取率的影响,并研究了有机相的连续萃取、有机相金含量与水含量的关系。结果表明,助溶剂体积比10%以上时,十四烷基二甲基苄基氯化铵对金具有萃取能力强,平衡时间短的特点。季铵盐阳离子与Au(CN)2-结合比为1∶1,符合离子缔合机理。  相似文献   

14.
苯酚稀溶液绿色萃取工艺   总被引:3,自引:0,他引:3  
为减少苯酚萃取回收过程中萃取剂对环境的污染 ,研究以绿色溶剂碳酸二甲酯 (DMC)和正己烷组成的混和溶剂作为萃取剂对苯酚稀溶液进行回收的新工艺。考察了苯酚萃取回收过程中萃取剂组成、温度、 p H、相比等工艺参数对萃取效果的影响 ,测定了碳酸二甲酯在水中的溶解度 ,同时研究了正己烷萃取回收碳酸二甲酯过程中的各项工艺条件。将混和溶剂萃取回收苯酚稀溶液的过程与正己烷萃取回收DMC过程结合起来就形成所谓的双溶剂萃取工艺。结果表明双溶剂萃取工艺在回收苯酚的同时对环境产生的二次污染小 ,是一种可行、有效的绿色萃取工艺  相似文献   

15.
研究了油水比、萃取剂浓度、萃取时间等对DNNSA反胶团萃取净化含镍电镀废水性能的影响,并采用图解法对逆流萃取理论级数进行了研究.结果表明:有机相煤油负载DNNSA反胶团萃取净化含镍电镀废水是可行的;提高油水比可以提高萃取效率;萃取时间为20 min达到萃取平衡;萃取剂浓度由0.005 7 M升高到0.446 M时,萃取效率提高了66.81%,即提高有机相中反胶团的数量有利于萃取反应的进行;DNNSA浓度为0.1 M时,其萃取容量约为3.57 g.L-1,多级逆流萃取理论级数为4级.  相似文献   

16.
基于田口方法,提出了采用萃取剂LIX984N从高铁生物浸出液中萃铜工艺的优化方法,对萃取率及反萃率进行信噪比分析和方差分析.结果表明,萃取过程中,萃取剂体积分数和相比对萃取率的贡献率较大,分别达到32744%,34180%,时间为较重要因素,pH值对信噪比影响较小.优化后的工艺参数:萃取剂体积分数为30%,相比(V(O)/V(A))为2∶1,时间为600s,pH值为15;反萃过程中,相比及时间为显著因子,温度为不显著因子.优化后的工艺参数:相比(V(O)/V(A))为1∶2,时间为600s,反萃温度为30℃.在优化后的条件下进行萃取—反萃—电积实验,萃取率达到9991%,反萃率达到9856%,电流效率达到92594%.  相似文献   

17.
用AOT/异辛烷反胶团系统萃取了添加不同浓度镁离子的猪心提取液中的细胞包素C.其结果为:添加0.025mol/LMg2+的萃取率E.R,(ExtractRatio)为96.5%(氧化型和还原型平均值).添加0.3mol/LMg2+的萃取率为28.3%。萃取后水相的吸收光谱中,还原型细胞色素C在520nm、550nm的吸收峰值消失。120nm的吸收峰值显著降低。萃取有机相的吸收光谱中,还原型细胞包素C在420nm、520nm和550nm处的特征吸收峰值显著。经反萃取后水相的吸收光谱与提取液以及萃取有机相的吸收光谱相同。说明添WMg2+后,经AOT/异辛烷萃取和反萃取过程能将细胞包素C从猪心提取液中萃取分离出来。  相似文献   

18.
改性金属膜膜萃取萃铜速度影响因素考察   总被引:1,自引:0,他引:1  
针对有机中空纤维膜材料在膜萃取过程中出现膜孔溶胀的问题,采用聚四氟乙烯涂敷在不锈钢纤维烧结膜表面制备一种有机/无机复合膜并用作膜萃取的支撑材料,在平板式膜器中进行萃铜研究.考察了影响铜的萃取及反萃过程传质速度的主要因素,包括料液浓度、水相及有机相流速等,并根据试验结果初步探讨了膜萃取过程传质阻力的分布情况,结果表明有机相边界层阻力大于水相边界层阻力.  相似文献   

19.
磷酸三异戊脂萃取苯酚的研究   总被引:1,自引:0,他引:1  
通过磷酸三异戊脂(TiAP)萃取苯酚的平衡常数的测定,发现磷酸三异戊脂对苯酚具有很高的萃取分配比,且分相很快;并探讨了盐析效应.采用双对数斜率法测得TiAP与苯酚的萃合物组成,考察了TiAP萃取苯酚的温度效应,根据Van’t Hoff方程求出相关的热力学函数,同时利用IR探讨了萃合物的结构.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号