首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membranes are essential for selectively controlling the passage of molecules in and out of cells and mediating the response of cells to their environment. Biological membranes and their associated proteins present considerable difficulties for structural analysis. Although enveloped viruses have been imaged at about 9 A resolution by cryo-electron microscopy and image reconstruction, no detailed crystallographic structure of a membrane system has been described. The structure of the bacteriophage PRD1 particle, determined by X-ray crystallography at about 4 A resolution, allows the first detailed analysis of a membrane-containing virus. The architecture of the viral capsid and its implications for virus assembly are presented in the accompanying paper. Here we show that the electron density also reveals the icosahedral lipid bilayer, beneath the protein capsid, enveloping the viral DNA. The viral membrane contains about 26,000 lipid molecules asymmetrically distributed between the membrane leaflets. The inner leaflet is composed predominantly of zwitterionic phosphatidylethanolamine molecules, facilitating a very close interaction with the viral DNA, which we estimate to be packaged to a pressure of about 45 atm, factors that are likely to be important during membrane-mediated DNA translocation into the host cell. In contrast, the outer leaflet is enriched in phosphatidylglycerol and cardiolipin, which show a marked lateral segregation within the icosahedral asymmetric unit. In addition, the lipid headgroups show a surprising degree of order.  相似文献   

2.
球状病毒衣壳采用二十面体对称。本文就二十面体病毒蛋白质骨架的自组装提出一个统计热力学模型。统计结果表明病毒衣壳二十面体对称不是自由能最小化的结果,而是衣壳内部蛋白结构参数最优化的结果。  相似文献   

3.
The mechanism of DNA ejection, viral assembly and evolution are related to the structure of bacteriophage phi X174. The F protein forms a T = 1 capsid whose major folding motif is the eight-stranded antiparallel beta barrel found in many other icosahedral viruses. Groups of 5 G proteins form 12 dominating spikes that enclose a hydrophilic channel containing some diffuse electron density. Each G protein is a tight beta barrel with its strands running radially outwards and with a topology similar to that of the F protein. The 12 'pilot' H proteins per virion may be partially located in the putative ion channel. The small, basic J protein is associated with the DNA and is situated in an interior cleft of the F protein. Tentatively, there are three regions of partially ordered DNA structure,  相似文献   

4.
The structure of the membrane-containing bacteriophage PRD1 has been determined by X-ray crystallography at about 4 A resolution. Here we describe the structure and location of proteins P3, P16, P30 and P31. Different structural proteins seem to have specialist roles in controlling virus assembly. The linearly extended P30 appears to nucleate the formation of the icosahedral facets (composed of trimers of the major capsid protein, P3) and acts as a molecular tape-measure, defining the size of the virus and cementing the facets together. Pentamers of P31 form the vertex base, interlocking with subunits of P3 and interacting with the membrane protein P16. The architectural similarities with adenovirus and one of the largest known virus particles PBCV-1 support the notion that the mechanism of assembly of PRD1 is scaleable and applies across the major viral lineage formed by these viruses.  相似文献   

5.
Smith DE  Tans SJ  Smith SB  Grimes S  Anderson DL  Bustamante C 《Nature》2001,413(6857):748-752
As part of the viral infection cycle, viruses must package their newly replicated genomes for delivery to other host cells. Bacteriophage straight phi29 packages its 6.6-microm long, double-stranded DNA into a 42 x 54 nm capsid by means of a portal complex that hydrolyses ATP. This process is remarkable because entropic, electrostatic and bending energies of the DNA must be overcome to package the DNA to near-crystalline density. Here we use optical tweezers to pull on single DNA molecules as they are packaged, thus demonstrating that the portal complex is a force-generating motor. This motor can work against loads of up to 57 pN on average, making it one of the strongest molecular motors reported to date. Movements of over 5 microm are observed, indicating high processivity. Pauses and slips also occur, particularly at higher forces. We establish the force-velocity relationship of the motor and find that the rate-limiting step of the motor's cycle is force dependent even at low loads. Notably, the packaging rate decreases as the prohead is filled, indicating that an internal force builds up to approximately 50 pN owing to DNA confinement. Our data suggest that this force may be available for initiating the ejection of the DNA from the capsid during infection.  相似文献   

6.
二十面体病毒衣壳结构蛋白具有不同的构象。装配过程中,正在附着的蛋白亚基构象与位置在先前蛋白亚基构象的指令下,发生相应的调整后装配到衣壳骨架上。局部相互作用指导下的装配反复进行,最终形成规整的二十面体病毒衣壳的立体结构。对T=1、3、4、7的病毒衣壳,分别建立了蛋白亚基构象局部相互作用的连接方式与增长方式,并构筑了T=4、7的立体模型。  相似文献   

7.
The three-dimensional structure of Periplaneta fuliginosa densovirus(pfDNV)is determined at 2.3nm resolution using the techniques of cryo-electron microscopy and image reconstruction.The pfDNV contains five structural proteins and 60 protein subunits arranged on a T=1 icosahedral shell with a relatively smooth surface.Its reconstruction reveals its distinct capsid structure from those observed in CPV and GmDNV.As in GmDNV,spike-like protrusions are not present in pfDNV at the threefold axes; while two small thorn-like protrusions are identified there However,different from CPV and GmDNV,cylindrical channels along the fivefold axes are closed in pfDNV;while a small thorn-like protrusions,which have not been reported in other parvovirus,are observed there in pfDNV although their function is yet to be investigated.The pfDNV has dimple-like depressions at the icosahedral twofold axes;but has no canyon-like regions encircling the fivefold axes.The icosahedrally well-ordered nucleic acid has also been observed in pfDNV,suggesting that the protein and nucleic acid probably form closed interaction.  相似文献   

8.
Li L  Jose J  Xiang Y  Kuhn RJ  Rossmann MG 《Nature》2010,468(7324):705-708
Alphaviruses are enveloped RNA viruses that have a diameter of about 700?? and can be lethal human pathogens. Entry of virus into host cells by endocytosis is controlled by two envelope glycoproteins, E1 and E2. The E2-E1 heterodimers form 80 trimeric spikes on the icosahedral virus surface, 60 with quasi-three-fold symmetry and 20 coincident with the icosahedral three-fold axes arranged with T = 4 quasi-symmetry. The E1 glycoprotein has a hydrophobic fusion loop at one end and is responsible for membrane fusion. The E2 protein is responsible for receptor binding and protects the fusion loop at neutral pH. The lower pH in the endosome induces the virions to undergo an irreversible conformational change in which E2 and E1 dissociate and E1 forms homotrimers, triggering fusion of the viral membrane with the endosomal membrane and then releasing the viral genome into the cytoplasm. Here we report the structure of an alphavirus spike, crystallized at low pH, representing an intermediate in the fusion process and clarifying the maturation process. The trimer of E2-E1 in the crystal structure is similar to the spikes in the neutral pH virus except that the E2 middle region is disordered, exposing the fusion loop. The amino- and carboxy-terminal domains of E2 each form immunoglobulin-like folds, consistent with the receptor attachment properties of E2.  相似文献   

9.
D Lee  H Sohn  G V Kalpana  J Choe 《Nature》1999,399(6735):487-491
  相似文献   

10.
The three-dimensional (3D) structure of the wild-type rabbit hemorrhagic disease virus (RHDV) has been determined to a resolution of 3.2 nm by electron cryomicroscopy and computer image reconstruction techniques. The 3D density map exhibits characteristic structural features of a calicivirus: a T=3 icosahedral capsid with 90 arch-like capsomeres at the icosahedral and local 2-fold axes and 32 large surface hollows at the icosahedral 5- and 3-fold axes. This result confirms that the RHDV isolated in China is a member of the Caliciviridae family. A rather continuous capsid shell was found without channels. However, our RHDV structure also reveals some distinct structural characteristics not observed in other caliciviruses, including interconnected capsomeres and the lack of protuberance on the base of each of the surface hollows. Two types of particles were identified with similar outer capsid structure but different density distributions inside the capsid shells, which could not be distinguished by conventional negative staining electron microscopy. As the genomic and subgenomic RNAs are both packaged into particles for RHDV, we suggest that the two types of particles identified correspond to those containing either the genomic or subgenomic RNAs, respectively.  相似文献   

11.
p53 and DNA polymerase alpha compete for binding to SV40 T antigen   总被引:2,自引:0,他引:2  
J V Gannon  D P Lane 《Nature》1987,329(6138):456-458
The large T antigen (T) of simian virus 40 is a multifunctional protein required for both viral DNA replication and cellular transformation. T antigen forms specific protein complexes with the host protein p53 in both virus-infected and transformed cells. p53 has recently been shown to be an oncogene, but its normal function is not clear. We previously established a radioimmunoassay to study the newly described complex between T antigen and DNA polymerase alpha, and have noted a similarity between the antigenic changes induced in T by the binding of both p53 and polymerase. We now extend this analysis to a larger collection of anti-T antibodies and formally establish that p53 and DNA polymerase alpha can compete for binding to the SV40 T antigen. At a critical concentration of the three components it is possible to detect a trimeric complex of T, p53 and DNA polymerase alpha. Our observations have important implications for the control by these nuclear oncogenes of viral and cellular DNA synthesis and viral host range in both normal and transformed cells. We present a model for the action of p53 in growth control.  相似文献   

12.
13.
We report the first atomic resolution structure of an animal virus, human rhinovirus 14. It is strikingly similar to known icosahedral plant RNA viruses. Four neutralizing immunogenic regions have been identified. These, and corresponding antigenic sequences of polio and foot-and-mouth disease viruses, reside on external protrusions. A large cleft on each icosahedral face is probably the host cell receptor binding site.  相似文献   

14.
15.
Structure of the bacteriophage phi29 DNA packaging motor   总被引:19,自引:0,他引:19  
Motors generating mechanical force, powered by the hydrolysis of ATP, translocate double-stranded DNA into preformed capsids (proheads) of bacterial viruses and certain animal viruses. Here we describe the motor that packages the double-stranded DNA of the Bacillus subtilis bacteriophage phi29 into a precursor capsid. We determined the structure of the head-tail connector--the central component of the phi29 DNA packaging motor--to 3.2 A resolution by means of X-ray crystallography. We then fitted the connector into the electron densities of the prohead and of the partially packaged prohead as determined using cryo-electron microscopy and image reconstruction analysis. Our results suggest that the prohead plus dodecameric connector, prohead RNA, viral ATPase and DNA comprise a rotary motor with the head-prohead RNA-ATPase complex acting as a stator, the DNA acting as a spindle, and the connector as a ball-race. The helical nature of the DNA converts the rotary action of the connector into translation of the DNA.  相似文献   

16.
Phasing of protein-induced DNA bends in a recombination complex   总被引:26,自引:0,他引:26  
U K Snyder  J F Thompson  A Landy 《Nature》1989,341(6239):255-257
  相似文献   

17.
The basic principles of the architecture of many viral protein shells have been successfully established from electron microscopy and X-ray data, but enveloped viruses have been more difficult to study because they resist crystallization and are easily deformed when prepared for electron microscopy. To avoid the limitations of conventional techniques when applied to enveloped viruses, we have used a cryo-electron microscopy method in which unfixed and unstained viruses are observed in an unsupported thin layer of vitrified suspension. Because of electron beam damage, the many different views required for high-resolution three-dimensional reconstruction cannot be obtained from a tilt series of the same particle. The images of many differently oriented viruses are combined using a novel reconstruction method, 'reconstruction by optimized series expansion' (ROSE). The structure of the envelope of Semliki Forest virus has been reconstructed to 3.5-nm resolution. The T = 4 geometry of the surface lattice, the shape of the trimeric spikes and their arrangement on the lipid bilayer are visualized.  相似文献   

18.
人和动物的多瘤病毒   总被引:1,自引:0,他引:1       下载免费PDF全文
多瘤病毒分类于乳多空病毒科,DNA肿瘤病毒。病毒无囊膜,直径40nm~45nm,有3种~4种衣壳蛋白,基因组为约5000对核苷酸组成的双链闭合环状DNA。病毒在自然界分布广泛,目前已从人、兔子、小牛、鸟类、啮齿类和灵长类等动物分离到多种多瘤病毒。各病毒内部有共同的属特异性抗原,但大多数病毒表面蛋白无血清学交叉反应。病毒在容许细胞中增殖良好,能使非容许细胞发生转化,在转化细胞中病毒DNA以整合到宿主染色体的方式存在。多瘤病毒感染有严格的种特异性,在自然宿主内大多数病毒呈隐性感染,但人和虎皮鹦鹉多瘤病毒对宿主有一定致病性。本文就有关多瘤病毒的感染和生物学特性研究进展作一概述  相似文献   

19.
Self-assembled structures having a regular hollow icosahedral form (such as those observed for proteins of virus capsids) can occur as a result of biomineralization processes, but are extremely rare in mineral crystallites. Compact icosahedra made from a boron oxide have been reported, but equivalent structures made of synthetic organic components such as surfactants have not hitherto been observed. It is, however, well known that lipids, as well as mixtures of anionic and cationic single chain surfactants, can readily form bilayers that can adopt a variety of distinct geometric forms: they can fold into soft vesicles or random bilayers (the so-called sponge phase) or form ordered stacks of flat or undulating membranes. Here we show that in salt-free mixtures of anionic and cationic surfactants, such bilayers can self-assemble into hollow aggregates with a regular icosahedral shape. These aggregates are stabilized by the presence of pores located at the vertices of the icosahedra. The resulting structures have a size of about one micrometre and mass of about 1010 daltons, making them larger than any known icosahedral protein assembly or virus capsid. We expect the combination of wall rigidity and holes at vertices of these icosahedral aggregates to be of practical value for controlled drug or DNA release.  相似文献   

20.
Taubenberger JK  Reid AH  Lourens RM  Wang R  Jin G  Fanning TG 《Nature》2005,437(7060):889-893
The influenza A viral heterotrimeric polymerase complex (PA, PB1, PB2) is known to be involved in many aspects of viral replication and to interact with host factors, thereby having a role in host specificity. The polymerase protein sequences from the 1918 human influenza virus differ from avian consensus sequences at only a small number of amino acids, consistent with the hypothesis that they were derived from an avian source shortly before the pandemic. However, when compared to avian sequences, the nucleotide sequences of the 1918 polymerase genes have more synonymous differences than expected, suggesting evolutionary distance from known avian strains. Here we present sequence and phylogenetic analyses of the complete genome of the 1918 influenza virus, and propose that the 1918 virus was not a reassortant virus (like those of the 1957 and 1968 pandemics), but more likely an entirely avian-like virus that adapted to humans. These data support prior phylogenetic studies suggesting that the 1918 virus was derived from an avian source. A total of ten amino acid changes in the polymerase proteins consistently differentiate the 1918 and subsequent human influenza virus sequences from avian virus sequences. Notably, a number of the same changes have been found in recently circulating, highly pathogenic H5N1 viruses that have caused illness and death in humans and are feared to be the precursors of a new influenza pandemic. The sequence changes identified here may be important in the adaptation of influenza viruses to humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号