首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L-谷氨酸是哺乳动物中枢神经系统中的神经递质,其代谢型丙氨酸受体mGluR7在正常中枢神经功能和多种神经退行性疾病的病理发生中起着重要作用。为了研究mGluR7基因相关疾病的生物和遗传基础,通过从BAC文库中筛选种子克隆和对酶切指纹图谱数据库查询等方法,构建了 覆盖mGluR7全长基因的基因组物理图谱,并采用鸟枪法策略对图中BAC克隆进行测序与拼接组装,最终得到准确度为万分之一的完整的基因组序列。序列分析表明:mGluR7基因是长达880kb的超大基因;其基因组GC含量为38%,重复序列含量为37.5%,由11个外显子和10个内含子组成,其中5个内含子长度超过100kb,内含子1长达285kb; 存在2个替换剪接转录本mGluR7α和mGluR7b。通过比较mGluR7基因家族3组8个亚型受体蛋白胞外区的基因组结构,发现它们对应的基因组结构分为3组,组内各成员的基因组结构较为保守,而组间各成员的基因组结构保守性较差,这种基因组水平的组内保守和组间差异是和蛋白质水平上的保守和差异一致的,提示这些受体的基本功能在进化的过程中有明显的分化。在含mGluR7的组内,尽管组内各成员的基因组结构趋于保守,但大部分含子长度变化幅度很大,揭示基因组结构变化的程度高于蛋白质水平的变化,这种变化预期是在基因表达的调控上体现其生物属性的。  相似文献   

2.
洪国藩同志主编的《水稻基因组工程》是一本很专业的学术专著。通过对水稻基因遗传图、物理图构建原理以及基因组测序,系统地介绍了我国在水稻基因组计划的实施进程中,所取得的举世瞩目的一流研究成果,向世人证明中国科学家在该领域所占据的制高点。 美国早在1990年就启动了人类基因组计划,我们中国科学家也承担了这一计划中的一部分研究任务。1992年8月,国家科委(现为科技部)宣布,中国开始实施水稻基因组计划。其目的是要在分子水平上解开水稻的遗传之谜,以及将研究中所获得的结果应用于水稻品种的改良。水稻是养活全球…  相似文献   

3.
L-谷氨酸是哺乳动物中枢神经系统中的神经递质, 其代谢型谷氨酸受体mGluR7在正常中枢神经功能和多种神经退行性疾病的病理发生中起着重要作用. 为了研究mGluR7基因相关疾病的生物和遗传基础, 通过从BAC文库中筛选种子克隆和对酶切指纹图谱数据库查询等方法, 构建了覆盖mGluR7全长基因的基因组物理图谱, 并采用鸟枪法策略对图中BAC克隆进行测序与拼接组装, 最终得到准确度为万分之一的完整的基因组序列. 序列分析表明: mGluR7基因是长达880 kb的超大基因; 其基因组GC含量为38%, 重复序列含量为37.5%; 由11个外显子和10个内含子组成, 其中5个内含子长度超过100 kb, 内含子1长达285 kb; 存在2个替换剪接转录本mGluR7a和mGluR7b. 通过比较mGluR基因家族3组8个亚型受体蛋白胞外区的基因组结构, 发现它们对应的基因组结构分为3组, 组内各成员的基因组结构较为保守, 而组间各成员的基因组结构保守性较差. 这种基因组水平的组内保守和组间差异是和蛋白质水平上的保守和差异一致的, 提示这些受体的基本功能在进化的过程中有明显的分化. 在含mGluR7的组内, 尽管组内各成员的基因组结构趋于保守, 但大部分内含子长度变化幅度很大, 揭示基因组结构变化的程度高于蛋白质水平的变化, 这种变化预期是在基因表达的调控上体现其生物属性的.  相似文献   

4.
从病毒基因组和感病水稻mRNA的cDNA克隆测得了水稻黄矮病毒基因3的核苷酸序列,基因3全长1068个核苷酸,包括19个核苷酸的5‘端非编码区,164个核苷酸的3’端非编码区和885个核苷酸的蛋白质编码区,可编码一个295年氨基酸的蛋白质。  相似文献   

5.
生命信息遗传中的若干数学问题   总被引:8,自引:0,他引:8  
张新生  王梓坤 《科学通报》2000,45(2):113-119
自1953年J.Watson和F.Crick发现DNA的双螺旋结构,人们对生命信息遗传的研究进入了一个崭新的时代,相继发现了“遗传密码字典”、“遗传的中心法则”等,使人们对生命是如何一代一代繁衍的,有了初步的了解,但离真正揭开生命信息遗传之谜还差之甚远,1987年,美国开始人类基因组研究计划,任务有二,第1是“读出”人基因组合部核苷酸的顺序;第2是“读懂”,即找出全部基因在染色体上的位置,了解它样  相似文献   

6.
1990年启动的人类基因组计划,历经艰辛和竞争,终于在10年后传出特大喜讯。参加该项目的各国科学家今年6月26日宣布,人类基因组工作草图已绘制完成,这是人类科学史上又一里程碑式的创举。如果将人类基因组比喻为一本由30亿个“字母”(碱基对)组成的生命天书,那么,这本天书由23章组成,每一章为一个染色体。而每一个染色体上,又包含着数千个被称为基因的“故事”。人类基因组计划就是测出人体所有染色体的30亿个“字母”的顺序,然后去读懂“故事”。6月26日公布的人类基因组工作草图包含人体90%以上的“字母”的位置信息,这足以帮…  相似文献   

7.
章彤  陈赛娟 《自然杂志》1995,17(2):93-97
人类基因组计划(HGP)是当今医学和生物学领域的一项巨大工程。通过遗传连锁图谱分析、物理图谱分析和大规模DNA测序来完成人基因组3×10~9碱基对全部核苷酸的顺序分析,从而为进一步的基因识别奠定基础。其最终目的是要研究人类基因组约10万个相关基因及其结构、生物学功能,这将为阐明人类单基因遗传病和多因素的多基因疾病的发病机制和防治方法提供重要的依据,并对全球生命科学的发展起巨大的推动作用。  相似文献   

8.
与美国启动人类基因组计划时的情形相仿,水稻基因组计划在我国启动的时候,也经历了曲折。“花了很多钱,将基因组的DNA顺序全测出来了,也是一本不为人所看得懂的天书。”这是反对者的主要理由。纯粹的学术上争论是科学发展的一种动力,是件好事。当然,DNA顺序本身不是天书。关于这一点,现在已是国际科学界的共识了。1996年,在众多国家实验室的共同努力下,完成了酿酒酵母1206.8万个核苷酸的全序列测定。从中确定了约5885个蛋白质基因,140个rRNA,40个SnRNA和275个tRNA基因。人们从此第一次…  相似文献   

9.
<正>前言随着高通量组学技术及生物信息学的高速发展,微生物组学已成为当下医学、农业、环境等多个领域的研究热点。为更全面、系统地研究微生物组,包括其与基因组、蛋白质组、代谢组以及微生物与宿主的互作关系,已有多个国家陆续开展了微生物组研究计划。例如:2007年美国国立卫生研究院启动“人体微生物组计划”、2008年欧盟启动“人类肠道宏基因组计划”、2010年美国阿贡国家实验室启动“地球微生物组计划”、2017年中国科学院牵头启动“中国微生物组计划”等。人类微生物组研究已明确,肠道是人体微生物的主要栖息器官之一,肠道微生物组对人体的免疫系统、内分泌系统、  相似文献   

10.
破译蛋白质     
生物学真正是21世纪科学。科学家在2001年宣布,在花费了10年和24亿英磅之后,一项国际性的努力已经在产生一幅人类基因组草图方面获得成功。现在正在制订有关一项更大的规模倡议的计划。已经创建了人类蛋白质组组织(HUPO),以协调人类蛋白质组的破译——即充分认识人体每个蛋白质的结构和功能。蛋白质领域中的这个与人类基因组计划相当的计划对在分子水平上认识疾病和加快药物的发现速度是至关重要的。没有它,人类基因组计划产生的一切数据就没有什么实际用途。虽然基因可能提供了生命的蓝图,但是根据这些信息产生行为并推动人体发挥功…  相似文献   

11.
亦云 《科学之友》2005,(7):82-83
美国加利福尼亚州一家公司不久前发布消息说,科学家已标记出了白、黑、黄三个人种基因组中发生单一核苷酸变异的位点,并初步绘成不同人种基因组的差异图。  相似文献   

12.
动态点击     
科学家开出增强记忆良方为什么人们的记忆力有好有坏?记忆力好坏与什么因素有关?著名科学家、中国科学院生物化学与细胞生物学研究员、博士生导师杜雨苍教授和他领导的研究小组经过十几年的深入研究,发现记忆肽能够影响人的记忆功能,在国际上率先揭开了记忆之谜。肽是人体生命活动的最基本因子。肽是由两个以上的氨基酸分子联结而成的蛋白质小片断。人体的很多生命活动都是由肽完成的,如传递信息、调节代谢等。目前,科学家在高等动物脑内已经发现上百种不同功能的神经肽,其中记忆肽能增强大脑的记忆功能。但长期以来,人们对神经肽如何…  相似文献   

13.
中国的虚拟人技术“数字化虚拟人”有三个阶段:第一阶段是“虚拟可视人”即“几何人阶段”,把实体变成切片,然后在计算机中变成三维的,但没有生理变化,在医学上的应用也是有限的。第二阶段是“虚拟物理人”,可以模拟各种交通事故对人体造成的意外创伤开展实验研究,以及防护措施的改进,它是有功能的。这个阶段的虚拟人就像真人一样,骨头会断。血管会出血。第三阶段是“虚拟生物人”,可以用于研究人体疾病的发生机理,预测疾病发展规律,以及进行各种新药的筛选等。  相似文献   

14.
最小基因组与生命起源   总被引:4,自引:0,他引:4  
吴家睿 《科学》2004,56(5):18-19
生命最本质的特征是。每一个生物体都拥有一份控制其结构和功能的“设计图”.这份“设计图”还可以一代代地遗传下去。在孟德尔和摩尔根时代,这份“设计图”被称为“遗传因子”或者“基因”,而在后基因组时代则被称为“基因组”。如果说达尔文的进化论关心的是物种起源。那么今天的进化论研究者则是把视野聚集在基因组的起源。此外,寻找最早基因组的工作又引出了另外一个非常重要的问题:维持一个能够独立生存的生物个体的基因组应该有多大。换句话说,能否得到一个满足生命活动最低需求的最小基因组。  相似文献   

15.
吴家睿 《科学》2005,57(2):29-30
根据分子生物学的“中心法则”(central dogma).遗传信息在几乎所有生物体内都是从DNA传递到RNA,然后再从RNA流向蛋白质。显然,RNA是一座“桥梁”,负责DNA和蛋白质之间信息的流通。在这个过程中,首先是将基因组DNA上的基因信息“复写”到一种称为mRNA的RNA分子上,然后再将mRNA含有的基因信息“翻译”为构成蛋白质的氨基酸序列。  相似文献   

16.
邓立彬  汤晓丽  康健  王青芸  曾长青 《科学通报》2007,52(18):2127-2134
自然选择是人类进化的动力, 直接影响人群分化. 目前对于自然选择在人群分化中的作用及其功能还知之甚少. 为了探讨这一问题, 本研究利用人类基因组国际单体型图计划的数据分析人群的遗传分化. 通过群体基因组学策略扫描常染色体区, 共发现了12669个高人群分化的SNPs和1853个人群特异的自然选择“候选基因”, 并通过基因诠释确定了121种受到强选择压力的生物学过程. 多层次分析显示, 人类基因组中存在普遍的正选择信号, 这些信号聚集于特定的染色体区域; 且多数“候选基因”和相应的生物学过程均局限于特定人群中, 提示自然选择在人群分化中发挥了重要作用. 本研究为从群体遗传和功能学角度深入研究自然选择和人群分化提供了新的线索.  相似文献   

17.
在人类基因组测序工程完成的同时 ,一个世界顶尖级的蛋白质组学研究小组宣布全球“人类蛋白质组研究组织 (HUPO)”成立。HUPO创始人把该组织视为类似人类基因组组织(HUGO)的后基因组学组织。该组织的使命是提请科学界、政治界和金融界对大规模的蛋白质分析工作给予更多的注意和支持。人类基因组组织HUGO是于 1 988年由政府资助创立的 ,旨在协调全世界的力量来分担人类基因组测序任务。现在 ,人类基因组序列草图已公诸于世 ,研究人员正在将他们的注意力转向确认蛋白质的功能 ,以及由基因编码的蛋白质的表达方式。科学家普遍…  相似文献   

18.
病毒SV40以及多瘤病毒作为直核细胞基因结构和表达的模型已被深入研究。 SV40 DNA是一个超螺旋的、环状的双链DNA,它的全核苷酸顺序(5224个碱基对)已发表。全顺序的测出,能够在基因组上确定已知基因的位置。基因组中至少有15.2%是不翻译成多肽的。全顺序可分为早转录区和晚转录区两大区段。早转录区编码两个蛋白质——t抗原和T抗原,二者的基因起始于同一位置,并共用一段约300个碱基对长的片  相似文献   

19.
蟑螂浓核病毒全核苷酸序列与基因组结构   总被引:5,自引:1,他引:4  
郭海涛  张珈敏  胡远扬 《科学通报》2000,45(10):1076-1080
测定了黑胸大蠊浓核病毒(pfDNV)复制型(RF)DNA的核苷酸序列,确定pfDNV基因组全长为5454个核苷酸,基因组两末端存在典型的发夹结构和侄 置重复序列,PfDNV基因正链有4个大的可读框(ORF),负链含3个大的可读框,并且可读框都集中在敏条链的5′端,两个可能的功能性启动了分别位于图距单位3和97处,基因组存在基因重叠现象和内含子区域,半对pfDNV基因组与同科其他细小病毒进行同源性比  相似文献   

20.
志贺氏菌属各亚群菌株基因组“共有骨架”组成的分析   总被引:6,自引:0,他引:6  
刘红  彭俊平  杨剑  孙立连  陈淑霞  金奇 《科学通报》2003,48(23):2451-2456
不同原核生物在基因组组成上的差异是其生物学性状差异的基础. 然而,进化中亲缘关系较近的菌群, 其基因组除了含有群或株特异的基因外, 还含有反映它们起源和进化痕迹的“共有骨架”结构, 而这些“共有骨架”恰恰是它们基本生存能力和共有生物学性状的基础. 志贺氏菌在起源和进化上与大肠杆菌极为密切, 目前倾向于将二者划为同一个种. 利用大肠杆菌K-12全基因组及Sf301特异性ORFs的芯片研究了志贺氏菌4个群间的基因组组成. 结果显示, 分别有16%~22% K-12的ORFs序列没有在志贺氏菌的基因组中被检测出, 而志贺氏菌的基因组中包含至少2800个保守的ORFs, 组成了其共有的“共有骨架”. 进一步分析提示, 这些“共有骨架”是维持肠道细菌正常生命生理活动所必需的基本组成. 此外, 只有20%的Sf301特异性ORFs同时存在于其他3个菌株中, 揭示了各菌株间基因组的异质性和菌属内的遗传多样性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号