首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
一种基于小波网络的混沌时间序列判定   总被引:2,自引:0,他引:2  
在对混沌时间序列与随机序列的不同特征进行分析的基础上,提出一种可对二者予以区分的判定算法.并结合具有优异特性的小波函数,构造一种小波神经网络.最终给出基于小波网络的集成的混沌时间序列判定-预测算法.  相似文献   

2.
基于实际交通流变化的不确定性和交通系统时变复杂的特征,应用小波分析理论,对原始交通流数据进行消噪处理,使消噪后的数据更能反映交通流的本质及变化规律。再针对交通流的非线性特征及其短期可预测性,应用混沌时间序列预测模型来预测短时交通量。结果表明:先进行小波消噪再进行预测所得的结果与实测值有更高的拟合度,可以用于短时交通流的预测。  相似文献   

3.
本文对香港恒生指数期货(HSI)的时间序列进行了分析和预测。我们发现该时间序列具有分数组和正的Lyapunov指数,这表明该序列是由内在的混沌确定力产生的。在对该序列进行动力学重构和可测性分析的基础上,我们用混沌算法的前馈神经网络对它进行了在线预测。计算机模拟表明混沌算法神经网络的预测噗蒿于背传算法神经网络的预测精度。  相似文献   

4.
积单元神经网络预测噪声环境的混沌时间序列   总被引:4,自引:0,他引:4  
用人工神经网络预测噪声环境的混沌时间序列是一个重要的问题,因为许多实际的时间序列数据都是含噪声的。提出一种利用积单元神经网络(PUNN)预测噪声环境的混沌时间序列的方法,它采用了粒子群优化器(PSO)训练PUNN网络。用所提方法对Lorenz混沌序列做了仿真实验,结果表明:所提方法结构简单、泛化能力强,是一种有效的方法;当PUNN网络的输入节点数目为2或3时,预测精度更高,而且泛化能力也更强。  相似文献   

5.
提出了一种新的混沌时间序列预测方法——多维泰勒网方法.该方法不以相空间重构方法中嵌入维数和时间延迟这两个关键参数的选取为前提,无需系统的先验知识和机理,仅根据已知的时间序列样本,通过多维泰勒网模型获得n元一阶多项式差分方程组,进而得到能反映非线性系统动力学特性的多维泰勒网动态模型.在此基础上提出了基于多维泰勒网的自适应多步预测方法,通过数据窗口的滑动自适应建模,实现对混沌时间序列的多步预测.将该方法应用于Lorenz混沌时间序列的一步和多步预测,均方误差分别达到2.56×10-5和2.76×10-3.仿真结果表明,该方法可以对混沌时间进行有效预测,且具有较高的预测精度.  相似文献   

6.
电力系统短期负荷预测在电力系统的调度和管理中起着重要的作用,已有研究证明了电力短期负荷是一非线性动力系统,负荷时间序列是混沌时间序列.文章讨论混沌时间序列的相空间重构技术,并以实际电网为例重构了该电力系统的相空间,最后采用Elman递归神经网络对负荷时间序列进行仿真预测,预测结果表明采用该方法能取得较好的预测效果.  相似文献   

7.
混沌算法神经网络与含噪声时间序列的预测   总被引:6,自引:0,他引:6  
在前馈神经网络连接权的动力学方程中引进一非线性反馈预后,网络在权空间具有混沌动力学行为:应用这种算法的神经网络对基于Mackey-Glass方程含噪声的时间序列进行在线预测,结果表明网络具有很好的预测性能。  相似文献   

8.
倪小军 《科技信息》2008,(31):34-34
利用相空间重构技术,并借助C-C方法和小数据量法从一维瓦斯涌出量时间序列中提取最大Lyapunov指数。结果表明:最大Lyapunov为0.28126的瓦斯浓度时间序列具有混沌特性,且在短期内,预测结果与实际情况符合较好。  相似文献   

9.
混沌时间序列局域线性预测方-法   总被引:12,自引:0,他引:12  
在许多场合下,时间序列中的明显随机性可能是由于非线性确定性系统中混沌行为的缘故.混沌系统对初值的极端敏感性使之不可能对其时间序列进行长期预测,然而,利用混沌的确定性可以进行短期预期.混沌时间序列预测首先要重构相空间,接着再利用非线性函数逼近方法构造一个动力学系统模型.探讨了预测模型问题,并用数值分析的方法对Farmer&Sidorowich,Linsay和Navone&Ceccato提出的三种典型混沌时间序列局域线性预测方法进行了研究.实验结果表明,这三种方法的性能是相同的.本文的结果将平息人们对这三种方法优劣的争论,有利于在实际中选择合适的预测模型.  相似文献   

10.
用人工神经网络预测噪声环境的混沌时间序列是一个重要的问题,因为许多实际的时间序列数据都是含噪声的.提出一种利用积单元神经网络(PUNN)预测噪声环境的混沌时间序列的方法,它采用了粒子群优化器(PSO)训练PUNN网络.用所提方法对Lorenz混沌序列做了仿真实验,结果表明所提方法结构简单、泛化能力强,是一种有效的方法;当PUNN网络的输入节点数目为2或3时,预测精度更高,而且泛化能力也更强.  相似文献   

11.
基于混合算法优化神经网络的混沌时间序列预测   总被引:1,自引:0,他引:1  
提出了一种混合算法优化神经网络的混沌时间序列预测模型.将粒子群优化算法与模拟退火算法过程中概率突跳的思想相结合形成一种新的混合算法,并用此混合算法优化神经网络建立预测模型.该模型克服了传统的神经网络收敛慢、易陷入局部最优等不足.利用该模型对Mackey-Glass混沌时间序列和Henon映射进行实验仿真,结果表明,该模型收敛速度快,稳定性能好,预测精度高.  相似文献   

12.
针对BP神经网络预测混沌时间序列存在的易陷入局部极小值和收敛速度较慢的问题,选取了两种改进预测模型,即GA-BP预测模型和PSO-BP预测模型。并将这两种模型对Lorenz混沌时间序列进行了预测比较实验。实验表明,两种改进模型比BP神经网络预测模型具有更好的预测性能,并且PSO-BP预测模型较GA-BP预测模型的预测精度更高。  相似文献   

13.
随机模糊神经网络及在随机混沌时间序列预测中的应用   总被引:1,自引:0,他引:1  
针对随机模糊神经网络(SFNN)的网络结构没有明确的物理含义,仅仅是一种实现随机模糊逻辑系统的计算结构的问题,对其网络结构进行了改进,重新定义了每层的节点原型。改进后每层之间的物理含义明确且节点数目减少,从而计算量有所减少。对于SFNN的参数和结构,可以分别通过参数学习算法和结构学习算法来优化。将SFNN用于随机混沌时间序列预测,仿真结果表明:该系统由于引入了随机的概念,使网络能更有效地防止噪声的干扰,因而更适合于工程应用。  相似文献   

14.
混沌时间序列神经网络拓扑结构的选取方法   总被引:4,自引:1,他引:4  
采用3层前向神经网络描述混沌时间序列的动力学模型,给出了该网络拓扑结构的确定方法。以及使网络泛化误差达到最小为依据确定网络的输入节点和隐含节点个数。仿真结果表明:该方法不仅优化了网络的结构,而且大大减少了网络的泛化误差。  相似文献   

15.
基于RBF神经网络的时间序列预测   总被引:3,自引:0,他引:3  
分析了RBF神经网络的结构和学习算法,利用RBF神经网络和Matlab神经网络工具箱建立人口数量预测模型,并应用该模型对中国人口数量进行了预测.  相似文献   

16.
应用Elman神经网络的混沌时间序列预测   总被引:5,自引:0,他引:5  
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性  相似文献   

17.
混沌时间序列的区间预测   总被引:4,自引:0,他引:4  
讨论混沌时间序列的区间预测,给出了最优嵌入维数的搜索算法及区间预测算法,并应用于实例,取得较好效果。  相似文献   

18.
小波神经网络用于原子半径的研究   总被引:7,自引:0,他引:7  
采用原子的第一电离能与原子的核外电子分布作为输入参数,使用已知的半径值作为训练样本,对小波神经网络进行了训练并成功地预报了86种元素的原子半径,较完整地补充了共价半径、金属半径与范德华半径标度方法中所缺的相应值.结果表明,对于原子及分子物理的研究,小波神经网络是一种很有潜力的工具.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号