首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
托卡马克等离子体中与逃逸电子动力学相关的实验研究是热核聚变的重要研究课题之一.逃逸电子的初级和次级产生机制是逃逸电子产生的两个主要机制.根据国内外的一系列资料,介绍了热核聚变研究中不同放电条件下逃逸电子的产生过程以及实验证据,包括:欧姆放电中电子逃逸的雪崩过程,电子回旋共振加热期间逃逸电子产生的实验现象以及低杂波电流驱动与离子伯恩斯坦波协同加热下逃逸增强的实验研究.  相似文献   

2.
利用快电子轫致辐射测量系统并采用低杂波功率关断的方法,分析了相同等离子体密度下低杂波功率对快电子慢化时间的作用以及相同低杂波功率下等离子体密度对快电子慢化过程的影响.实验结果表明:快电子的慢化时间与等离子体参数间有强依赖关系.一定等离子体密度下低杂波功率值越高,快电子慢化时间越长.一定低杂波功率下等离子体密度越高,快电子慢化时间越短.快电子慢化时间理论分析与实验结果吻合.  相似文献   

3.
实验研究发现HT-7托卡马克在放电起始阶段采用初始密度爬升不仅抑制了逃逸电子的初级产生过程,同时也抑制了逃逸电子的次级产生过程。而TEXTOR-94托卡马克在类似实验中观察到了比较强的次级逃逸过程。对该现象进行了对比分析。  相似文献   

4.
中国聚变工程试验堆等离子体电流高达14 MA,等离子体破裂将产生大量逃逸电子,形成巨大的逃逸电流,如不抑制将对装置造成极大的损伤。本文利用托卡马克等离子体破裂的零维模型,数值计算了中国聚变工程试验堆在电流猝灭阶段Dreicer机制产生逃逸种子的雪崩倍增,获得了逃逸电流和逃逸动能随时间的演化关系,并与解析结果进行了对比。研究了影响电子雪崩过程逃逸电流的关键物理因素,发现破裂后等离子体电子温度、密度和有效电荷对逃逸种子电流的产生和逃逸电流的抑制有巨大影响。通过增加电子密度,从而增强碰撞耗散,可以有效抑制破裂后逃逸电流,这对选择合适的方法抑制破裂后的逃逸电子具有积极的意义。  相似文献   

5.
分析了HT-7托卡马克壁处理前后欧姆放电时的自举电流占总等离子体电流比例的变化情况.壁处理以后,等离子体的密度分布变宽,等离子体压力梯度在边界较大,边界的电子温度比壁处理前高,从而碰撞频率降低,使得自举电流成份比例从壁处理前的小于5%增大到百分之十几.这一变化解释了壁处理后稳态放电时,等离子体电流可以轻松放大且等离子体电流分布变宽的现象.  相似文献   

6.
研究了HT-7托卡马克装置欧姆放电情况下电子热扩散系数χe的空间分布以及它与等离子体参数如等离子体中心弦平均密度、等离子体电流的关系。χe沿等离子体小半径的分布是逐渐增大,中心最低χe在等离体1/2小半径处的数值随等离子体的中心弦平均密度增大而降低,随等离子体电流的增大而增大。且硼化后的值比硅化后的值稍小一些。χe比INTOR定标小很多,但与欧姆放电情况下的Merezhkin定标以及Coppi-Mazzucato定标数值差不多。  相似文献   

7.
为了探求HT-7托卡马克装置中加低杂波后等离子体约束改善这一现象的原因,文章从电子的径向力平衡方程入手,通过数值模拟程序计算出欧姆阶段和低杂波阶段下的径向电场分布.结果发现,加低杂波后,在低杂波功率沉积的地方,径向电场在负方向变强,径向电场分布梯度变陡,加波前后径向电场的差值(△Er)分布形成了凹槽结构,意味着加波后的...  相似文献   

8.
低杂波电流驱动是实现托卡马克稳态运行的主要手段。文章对EAST全超导托卡马克低杂波电流驱动进行了放电模拟研究,着重分析了低杂波驱动电流、波功率沉积、放电过程的伏秒消耗、等离子体电流、位置及等离子体电流剖面和位形演化,模拟结果对今后EAST开展长脉冲稳态放电有参考意义。  相似文献   

9.
水下等离子体放电时,两电极间会形成高导电性的放电通道.放电通道的电阻随时间变化,从放电初期的几欧姆到中期的几毫欧姆,在放电后期又会迅速升高.水下等离子体放电有多种形式的能量产生,本文在较全面考虑主要能量形式的基础上,对气泡内能、气泡脉动能、冲击波能等不同能量进行系统的分析计算,结合实验测定的放电电流和冲击波压力,提出利用能量守恒定律对水下等离子体放电通道的电阻进行计算的方法,并与其它计算放电通道电阻的方法进行了比较,对比得出该方法的简便性和可靠性,并简要给出了能量转换控制的建议.  相似文献   

10.
针对Langmuir单探针测量空气辉光放电等离子体特性实验中,探针的伏安特性曲线不理想这一问题,分析了两种数据处理方法,并通过了实验验证;对影响等离子体参数分布的因素(放电电压、气压)进行了考察。结果表明:放电电压越高,电子的温度越低,密度越高;气压越高,电子的温度越低,密度越高。  相似文献   

11.
最近的实验研究表明,在300 kHz–3 MHz的中频域,大气压氦气介质阻挡放电存在两种放电模式,即Ω模式和混合模式.为了深入研究中频域的放电模式与低频域(25–100 kHz)辉光放电模式及高频域(5–15 MHz)α模式之间的关系,本文借助于一维流体模型,数值模拟了中频域放电的这两种放电模式,并与实验结果进行了比较.数值研究表明,在中频域Ω模式下,传导电流及功率相对较小,带电粒子主要产生在放电间隙的中部,密度较低,电子加热方式主要为放电区域中部的欧姆加热.而中频域的混合模式,既体现了低频域的辉光放电模式的特点,比如阴极附近有很高的离子密度,电子产生及欧姆加热的区域均在鞘层内部,同时也体现了高频域的α模式的特点,比如在放电间隙中部有密度很高的等离子体区,这些计算结果均与实验观测定性一致.同时,进一步在固定电压的条件下研究了放电模式随频率的变化,指出中频域的混合模式实际是低频域的辉光放电模式与高频域的α模式之间的过渡阶段,本研究将有助于深化人们对大气压气体放电中放电模式之间转化的认识.  相似文献   

12.
为提高等离子体密度和工质气体电离率,本文采用螺旋天线产生的螺旋波激励Ar等离子体,并利用射频补偿Langmuir探针分析了等离子体的离子密度和电子温度特征.试验结果表明,气压增加的同时,随着功率的升高,螺旋波等离子体出现放电模式转换,提前进入螺旋波放电模式.在1.0 Pa压强下,当射频功率达到400 W时,等离子体进入螺旋波放电模式,此时扩展区域的等离子体密度超过1×1018 m-3.电子密度在放电管中心区域最高,并沿径向逐渐降低.本文的研究结果将为大体积H2螺旋波等离子体提供依据和经验.  相似文献   

13.
采用N2/1-12直流辉光放电等离子体综合的Monte Carlo模型,通过计算N2/H2混合气体直流辉光放电等离子体电子碰撞电离及离解电离率,电子密度及电子能量分布函数,研究了H2的浓度对氮辉光放电等离子体电子碰撞电离过程的影响.研究结果表明:随着H2浓度的升高,电子的电离及离解电离碰撞率减少;但在一定的放电条件下,加入少量的H2,可以提高电子碰撞电离及离解电离率,即选取合适的放电参数,加入少量的氢,可以提高放电空间的电子及离子的密度.模型考虑了12种和电子相关的反应,在氮气中加氢的比例为0~30%.这些影响能通过放电中发生的碰撞过程及鞘层厚度的改变得到解释.研究结果为认识N2/H2混合气体辉光放电等离子体过程机理提供参考依据.  相似文献   

14.
巨洪军 《科技信息》2011,(15):J0140-J0141
本文主要介绍了等离子体中逃逸电子产生机制的计算及在不同的条件下逃逸电子产生机制占有不同的主导地位。逃逸电子的产生主要有两种机制:一种是初级产生机制主要在初级阶段占主导作用;另一种是次级产生机制在放电的平顶阶段起主导作用。托卡马克装置中的逃逸电子产生时会伴有很高的能量释放,对实验装置第一壁材料的性能和寿命造成不良影响。  相似文献   

15.
托卡马克装置上等离子体不稳定性会被非麦克斯韦分布的逃逸电子激发。逃逸电子在特定条件下会与不稳定性发生反常多普勒共振,此共振结果将降低逃逸电子的能量,减小对装置造成的危害。本文利用电子回旋辐射(ECE)等诊断系统分析了HL-2A上slide-away放电中反常多普勒共振特征。实验结果表明:slide-away放电模式下ECE信号主要有台阶型、指数型、指数-台阶型和双波型4类波形。统计显示不稳定性阈值与等离子体电流以及磁场强度值无线性关系。反常多普勒不稳定性阈值(ωpece)统计分布范围约为0.17~0.80,其中最高值分布范围为0.35~0.40。  相似文献   

16.
为了提高容性耦合等离子体源的等离子体密度,采用空心电极来代替传统平板电极进行放电。本文采用流体力学模型对容性耦合空心电极放电进行建模仿真,研究不同空心电极的孔隙结构、放电电压及极板间距下,空心电极对容性耦合等离子体放电特性,特别是对等离子体密度的影响。结果表明,采用传统平板电极放电得到的等离子体密度仅为1.86×1015m-3;当采用倒梯形孔隙结构空心电极进行放电时,空心阴极效应被抑制,等离子体密度仅有少量增长;采用矩形或梯形孔隙结构的空心电极进行放电时,孔隙下方的等离子体密度显著提高,达到2.37×1015m-3以上。研究还发现,随着放电电压从50 V增至125 V,空心阴极效应和静电边缘效应都显著增强,放电中心处的电子密度从4.76×1014m-3迅速增加到3.98×1015m-3,但等离子体密度在径向分布上出现两个明显的峰值,导致均匀性变差。随着极板间距的增加,等离子体密度显著提高,等离子体均匀性受扩散效应的影响得到明显改善。  相似文献   

17.
在HT-7托卡马克实验装置中采用低杂波电流驱动,在不同低杂波功率和电子密度(ne)下,考察中心电子温度和能量约束时间的变化。观察到当ne=1.3×1019~2.6×1019m-3时,中心电子温度随低杂波输入功率的增大而升高;当ne=1.3×1019m-3,低杂波输入功率为400 kW时,电子温度最高,达到1.37 keV。在本实验参数范围内,其能量约束时间与ITER89-P L-模定标率十分吻合。比较欧姆加热和低杂波加热下的电子温度分布,当ne=1.71×1019m-3,低杂波输入功率为260 kW时,电子温度有明显的温度梯度出现。  相似文献   

18.
为给非热等离子体烟气脱硫脱硝提供理想的反应器,分析了电晕耦合无声放电结构,并通过数值模拟对比研究了它与电晕放电结构的静电场分布特征。通过对比分析电晕放电结构和无声放电结构产生的非热等离子体特点,发现电晕耦合无声放电结构是一种理想的大气压非热等离子体产生结构,同时分析了电晕耦合无声放电结构及其优点。通过耦合放电结构和电晕放电结构的静电场数值模拟,发现阻挡介质板的加入提高了放电区域的电场强度,放电区域内电场强度的增大有利于流光放电的发生,同时提高了折合电场强度,进而提高了放电产生的电子能量,有助于生成更多的活性自由基。  相似文献   

19.
电子逃逸是托卡马克等离子体中一种普遍的现象.对逃逸电子的监测是保护装置第一壁材料的基础.托卡马克上等离子体芯部逃逸电子发射的同步辐射是利用红外相机测量,但是红外相机的光路成本高,相机本身也比较昂贵.通过分析KSTAR装置逃逸电子的同步辐射功率谱,研究了逃逸电子同步辐射波长与能量的关系,拟发展新型的逃逸电子诊断系统.  相似文献   

20.
利用静电探针对弱磁场中直流辉光放电等离子体参数进行了诊断,测量了等离子体的密度和温度.结果表明,离子密度随放电电流的增加而增加,随气压的升高而升高;电子温度随放电电流的增加而增加,随气压的升高而降低;在磁场中,离子密度随磁场的增强而增大,电子温度随磁场的增加而减小.实验结果与理论计算结果基本趋势相一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号