首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以聚四氢呋喃(PTMG-1000)、异佛尔酮二异氰酸酯(IPDI)、季戊四醇三丙烯酸酯(PETA)和端羟基超支化聚酯(HBP-OH)等为主要原料,制备了水性超支化聚氨酯丙烯酸酯(WHPUA-n)乳液.通过傅里叶变换红外光谱(FT-IR)和核磁共振氢谱(1H NMR)表征了WHPUA-n的化学结构.研究了HBP-OH的分子量对WHPUA-n乳液及固化膜性能的影响.结果表明:HBP-OH能显著提高乳液的稳定性和综合性能,随着HBP-OH分子量的增加,乳液的黏度先降低后增加,乳液固化膜的拉伸韧性、耐磨性、耐水性和耐热性先增加后降低,中等分子量的HBP-OH(H102)制备的乳液的综合性能最好.WHPUA-n乳液稳定性好、粒径均匀,其固化膜光泽度高、硬度高、附着力高和耐水性优异,在水性涂料领域潜力巨大.  相似文献   

2.
利用乙酸酐对自身可以水分散的超支化水性聚氨酯(WHBPU)进行封端,得到了乙酰基封端的超支化水性聚氨酯(AWHBPU).研究了超支化水性聚氨酯共混改性聚氨酯乳液的剪切黏度、粒径分布以及表面张力.实验结果表明,对WHBPU羟基的封闭可以有效降低共混聚氨酯乳液的黏度;AWHBPU共混乳液偏离牛顿流体程度明显下降;粒径和表面张力测试表明,超支化水性聚氨酯进入胶束内部引起粒径上升是引起黏度下降的重要原因.  相似文献   

3.
为改善丁羟复合固体推进剂(HTPB推进剂)的性能,选用超支化聚氨酯(HBPU)作为HTPB推进剂的助黏合剂,制备了含有超支化聚氨酯的HTPB推进剂. 采用DSC法研究了HBPU与HTPB推进剂主要组分的相容性,同时进行了HBPU对HTPB推进剂流变性能和力学性能的影响研究. 研究结果表明,HBPU与AP、HTPB相容性好;HTPB推进剂表观黏度随着HBPU的质量分数增加而增大;当HBPU质量分数为7%时,超支化聚氨酯改性的HTPB推进剂最大拉伸强度提高了24.17%,最大延伸率提高了22.84%.   相似文献   

4.
水性双组分丙烯酸酯聚氨酯涂料   总被引:5,自引:0,他引:5  
用内乳化剂二羟甲基丙酸(DM PA)对异氰酸酯进行改性,然后将其与丙烯酸酯多元醇反应制备了水性双组分丙烯酸酯聚氨酯涂料。研究了反应物摩尔比n(-NCO)/n(-OH)、中和度等因素对涂膜性能和外观的影响。结果表明:经DM PA改性后,增加了异氰酸酯预聚物的亲水性及其与丙烯酸酯多元醇的相容性;涂膜的拉伸强度和耐水性均有较大的提高,涂膜的外观也有所改善。  相似文献   

5.
3D打印技术是将被加工零件进行逐层分析,并且使用软件生成相应的运行轨迹,而后使用打印机构进行逐层打印,采取逐层增加材料的方式进行堆积成形,具体打印路径的运动控制语言可以根据运动载体不同进行对应生成。相对于传统方式具有快速成形和适用面广的优点。数控技术在当今的使用已经非常普遍,操作人员熟悉和上手操作都非常快,而且其运动控制的命令语言也基本上实现了规范统一。将数控技术应用在3D打印上,将使得其在工业领域中得到有效的发展,本文阐述了在工业3D打印领域中如何对数控技术的应用。  相似文献   

6.
合成烯丙基甘油醚(AG)作为一种新型双羟基偶联剂用于聚氨酯(PU)与丙烯酸酯聚合物(PAC)的改性材料。采用核磁共振、红外光谱和气相色谱等对其进行表征。研究偶联剂AG和HEA与PU预聚体和丙烯酸酯单体的反应性。实验结果表明:随着偶联剂(AG和HEA)与PU反应温度的升高,异氰酸酯(NCO)的转化率逐渐增加;使用AG为偶联剂时,PU和AC未发生接枝反应;使用HEA为偶联剂时,明显发生了预期的接枝反应。当n(HEA)∶n(NCO)1时,随HEA用量增加,PU与AC的接枝率逐渐增加;当n(HEA)∶n(NCO)1时,继续增加HEA用量PU接枝率变化不大。  相似文献   

7.
水性聚氨酯-丙烯酸酯粘合剂的研制   总被引:3,自引:0,他引:3  
文中研究了聚氨酯-丙烯酸酯(PUA)胶乳粒子的制备工艺及影响乳液性能的因素,成功地合成了以聚氨酯(PU)为壳、丙烯酸类单体(PA)为核的核-壳结构乳液。胶乳平均粒径为 100nm,且具有良好的贮存稳定性。  相似文献   

8.
3D打印技术作为区别于传统制造技术的一种新型技术,近年来在陶瓷制造领域得到了广泛的应用.该技术无需模具,可快速制备出形状复杂的陶瓷部件.系统综述了6种常见的3D打印技术包括浆料堆积成型技术、光固化成型技术、激光选区烧结技术、分层实体成型技术、三维打印成型技术、喷射打印成型技术在陶瓷制造领域的研究进展.综合3D打印技术在陶瓷制造领域的应用现状,展望了未来陶瓷3D打印技术的发展趋势.  相似文献   

9.
主要针对3D打印技术在体育产业中的应用展开研究。首先,对3D打印技术进行简要介绍;其次,论述3D打印技术在体育产业中的具体运用;最后,对3D打印技术在体育产业中的应用进行思考。  相似文献   

10.
谢静 《科技资讯》2014,(3):161-162
本文分析了国内外3D打印技术的研究现状和几种快速成形技术的使用方法及其工作原理,介绍了3D打印技术在国内外航空领域中的研究状况和实际应用情况。  相似文献   

11.
 随着医疗技术进步和人们健康意识的提升,以3D打印技术为基础制备的植入式医疗器械开始在人们生活中扮演重要角色,在个性化定制医疗中起到了至关重要的作用。本文综述了近年来3D打印技术在牙科、骨科、气血管支架、皮肤、药片和生物打印等植入式医疗器械领域的应用,总结了3D打印市场的发展进程,分析并描绘了3D打印技术在生物医学材料发展的中的地位和前景。  相似文献   

12.
3D打印技术是一种完全依靠智能化机械完成各类产品打印的技术,且能够形成3D立体产品,适用于各类复杂构造和精细化构造产品的设计和制作。目前,3D打印技术已经被运用了建筑、产品生产、高端设备制作(如火箭)、精细化零件生产的过程中当中。该文的主要内容是关于3D打印技术在室内设计中的应用研究。  相似文献   

13.
毕业文化纪念品通过采用3D打印技术可以根据消费者的个人喜好,采用CAD/CAM软件,完成产品的设计加工,以达到自主设计、自主制造、自主生产的效果。3D打印制造环节数字化,生产周期短,克服了传统制造工艺的种种局限,为毕业文化纪念品相关产业提供了一种新思路,新方法。毕业文化纪念品市场广阔,存在巨大的消费需求。研究3D打印技术在毕业文化纪念品中的应用,势必将会对其行业发展具有深刻意义。  相似文献   

14.
陈雪 《广东科技》2014,(15):60-63
当前,3D打印技术(又称增材制造技术)在国内外掀起了一波新的发展热潮,这个新技术通过摒弃传统的生产线而降低了成本,大幅减少了材料浪费。随着技术的不断成熟,3D打印越来越多地在制造、医疗、文创、航空航天等产业中得到应用,其中最“神奇”的要数3D生物打印。  相似文献   

15.
多检测凝胶渗透色谱技术在超支化聚氨酯表征中的应用   总被引:1,自引:0,他引:1  
采用凝胶渗透色谱(GPC)/示差折光指数(RI)/直角激光光散射(RALLS)/示差粘度(DV)三检测联用技术在25℃的四氢呋喃(THF)中对超支化聚氨酯及与其结构类似的线性聚氨酯进行了表征.比较了超支化聚合物和线性聚合物lg[η],lgRg与lgMr的关系,计算了超支化聚氨酯的结构因子ε.结果表明,超支化聚合物具有较低的特性粘数([η]),较小的旋转半径(Rg);超支化聚氨酯不符合普适标定规律.  相似文献   

16.
采用种子溶胀乳液聚合法,以水性聚氨酯为种子,甲基丙烯酸甲酯和丙烯酸丁酯为单体制备水性聚氨酯丙烯酸酯复合乳液,考察了聚合温度、搅拌速度、引发剂种类、引发剂用量及反应时间对聚合过程的影响.结果表明:适宜的聚合温度控制为85℃;适宜的搅拌速率为150~250 r/min;采用水溶性引发剂时引发效率较高,过硫酸钾的最佳用量为0.8%;随着反应时间的增加,乳液粒径先减小后增大.用红外光谱对聚氨酯丙烯酸酯乳液进行分析,表明丙烯酸酯参与了反应.  相似文献   

17.
紫外光固化水性聚氨酯-丙烯酸酯涂料研究   总被引:13,自引:0,他引:13  
由甲苯二异氰酸酯、聚醚多元醇、二羟甲基丙酸、1,4-丁二醇及丙烯酸-2-羟基乙酯合成了紫外光固化聚氨酯一丙烯酸酯,产物经叔胺中和得自乳化水分散体系.考察了羧基含量、中和度、聚醚分子量、异氰酸酯指数等对乳液粒径、粘度、稳定性及漆膜的耐水性能和耐甲苯性能的影响.  相似文献   

18.
19.
采用甲苯二异氰酸酯、聚丙二醇、二羟甲基丙酸和丙烯酸羟乙酯合成了水性紫外光固化聚氨酯丙烯酸酯树脂,并用高支化聚酯对其进行了改性,研究分析了影响树脂水溶性和感光性的各种因素。结果表明,树脂亲水性与亲水基团含量呈正比;以819-DW为光引发剂,质量分数为3%时,涂膜光固化速度最佳;经高支化聚酯改性后的涂膜的综合性能有了较大的提高,质量分数为10%时,涂膜的综合性能最佳。  相似文献   

20.
正科技馆作为先进科学技术传播的前沿阵地,为3D打印的科学普及发挥重要的作用。3D打印技术在近二十年来得到了迅猛的发展,但目前在国内仅在高校、科研院所、生物医学、军工制造业及极少数立体照片打印店等的领域内使用,个人或家庭购买3D打印机的情况更是少见,对于不少社会民众来说,似乎还有点迷惑不解,有的甚至闻所未闻。因此,科技馆作为先进科学技术知识的主要传播者,引导公众了解3D打印技术的发展及应用,将3D打印技术的原理及知识科普化,已显得十分重要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号