首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Specific chromosomal translocations have been observed in several human and animal tumours and are believed to be important in tumorigenesis. In many of these translocations the breakpoints lie near cellular homologues of transforming genes, suggesting that tumour development is partly due to the activation of these genes. The best-characterized example of such a translocation occurs in mouse plasmacytoma and human B-cell lymphoma, where c-myc, the cellular homologue of the viral oncogene myc, is brought into close proximity with either the light- or heavy-chain genes of the immunoglobulin loci, resulting in a change in the regulation of the myc gene. T-cell malignancies also have characteristic chromosomal abnormalities, many of which seem to involve the 14q11-14q13 region. This region has recently been found to contain the alpha-chain genes of the human T-cell antigen receptor. Here we determine more precisely the chromosome breakpoints in two patients whose leukaemic T cells contain reciprocal translocations between 11p13 and 14q13. Segregation analysis of somatic cell hybrids demonstrates that in both patients the breakpoints occur between the variable (V) and constant (C) region genes of the T-cell receptor alpha-chain locus, resulting in the translocation of the C-region gene from chromosome 14 to chromosome 11. As the 11p13 locus has been implicated in the development of Wilms' tumour, it is possible that either the Wilms' tumour gene or a yet unidentified gene in this region is involved in tumorigenesis and is altered as a result of its translocation into the T-cell receptor alpha-chain locus.  相似文献   

2.
E Webb  J M Adams  S Cory 《Nature》1984,312(5996):777-779
Chromosome translocations in B-lymphoid tumours are providing intriguing insights and puzzles regarding the role of immunoglobulin genes in the activation of the myc oncogene (reviewed in refs 1, 2). The 15 ; 12 translocations found in most murine plasmacytomas and the analogous 8 ; 14 translocation in human Burkitt's lymphomas involve scissions of murine chromosome 15 (human chromosome 8) near the 5' end of the c-myc gene and subsequent fusion near an immunoglobulin heavy-chain gene. The less well characterized 'variant' translocations found in about 15% of such tumours also involve the myc-bearing chromosome band, but exchange occurs with a chromosome bearing an immunoglobulin light-chain locus--in mice, the kappa-chain locus bearing chromosome 6 (refs 3-5) and, in man, chromosome 2 (or 22), at the same band at which the kappa (or lambda) locus lies (reviewed in ref. 1). The Burkitt variant translocations involve scissions 3' of c-myc; one 8 ; 22 translocation placed the C lambda locus just 3' of c-myc, but usually the chromosome 8 breakpoint is a greater, but unknown, distance away from c-myc, more than 20 kilobases (kb) in one 8 ; 2 translocation involving the C kappa gene. Little is known about the murine 6 ; 15 translocations, although a C kappa gene cloned from one plasmacytoma (PC7183) is linked, via chromosome 12 sequences, to an unidentified region of chromosome 15 (ref. 11). We describe here the chromosome fusion region from plasmacytoma ABPC4, which displays the typical reciprocal 6;15 translocations. We find that the chromosome 6 breakpoint is near C kappa but, unlike those in the heavy-chain locus, not at a position where immunoglobulin genes normally recombine. Moreover, the chromosome 15 sequences involved in the ABPC4 translocation are not derived from the vicinity of c-myc.  相似文献   

3.
The GLI gene is a member of the Kruppel family of zinc finger proteins   总被引:27,自引:0,他引:27  
  相似文献   

4.
Loss of heterozygosity of chromosome 3p markers in small-cell lung cancer   总被引:15,自引:0,他引:15  
S L Naylor  B E Johnson  J D Minna  A Y Sakaguchi 《Nature》1987,329(6138):451-454
Specific chromosomal deletions sometimes associated with tumours such as retinoblastoma (chromosome 13q14) and Wilm's tumour (chromosome 11p13) have led to the hypothesis that recessive genes may be involved in tumorigenesis. This hypothesis is supported by demonstration of allele loss specific for these regions using polymorphic DNA markers and by the isolation of a complementary DNA clone for the retinoblastoma gene. A cytogenetic deletion in chromosome 3 (p14-p23) was reported in small-cell lung cancer (SCLC) by Whang-Peng et al. At least one homologue of chromosome 3 was affected in the majority of SCLC tumours; however, the multiple chromosomal changes seen presented the possibility that chromosome 3 was rearranged, not deleted. We used polymorphic DNA probes for chromosome 3p and compared tumour and constitutional genotypes of nine SCLC patients. Our data show loss of alleles of chromosome 3p markers in tumour DNA of all nine patients supporting the hypothesis that this region contributes to tumorigenesis in SCLC.  相似文献   

5.
M M Le Beau  C A Westbrook  M O Diaz  J D Rowley  M Oren 《Nature》1985,316(6031):826-828
Recent studies have demonstrated that the cellular tumour antigen p53 (ref. 1) can complement activated ras genes in the transformation of rat fibroblasts, suggesting that the gene encoding p53 may act as an oncogene. Here, by using in situ chromosomal hybridization, we have mapped the p53 gene to human chromosome 17, at bands 17q21-q22, the region containing one of the breakpoints in the translocation t(15;17) (q22;q21) associated with acute promyelocytic leukaemia (APL). Hybridization of p53 and erb-A (17q11-q12) probes to malignant cells from three APL patients indicated that the p53 gene is translocated to chromosome 15 (15q+), whereas erb-A remains on chromosome 17. Analysis of variant translocations demonstrates that the 15q+ chromosome contains the conserved junction, suggesting a role for p53 in the pathogenesis of APL. However, rearrangements of the p53 gene were not detected on Southern blotting of DNA from leukaemic cells of four APL patients with t(15;17).  相似文献   

6.
R D Nicholls  J H Knoll  M G Butler  S Karam  M Lalande 《Nature》1989,342(6247):281-285
Prader-Willi syndrome (PWS) is the most common form of dysmorphic genetic obesity associated with mental retardation. About 60% of cases have a cytological deletion of chromosome 15q11q13 (refs 2, 3). These deletions occur de novo exclusively on the paternal chromosome. By contrast, Angelman syndrome (AS) is a very different clinical disorder and is also associated with deletions of region 15q11q13 (refs 6-8), indistinguishable from those in PWS except that they occur de novo on the maternal chromosome. The parental origin of the affected chromosomes 15 in these disorders could, therefore, be a contributory factor in determining their clinical phenotypes. We have now used cloned DNA markers specific for the 15q11q13 subregion to determine the parental origin of chromosome 15 in PWS individuals not having cytogenetic deletions; these individuals account for almost all of the remaining 40% of PWS cases. Probands in two families displayed maternal uniparental disomy for chromosome 15q11q13. This is the first demonstration that maternal heterodisomy--the presence of two different chromosome 15s derived from the mother--can be associated with a human genetic disease. The absence of a paternal contribution of genes in region 15q11q13, as found in PWS deletion cases, rather than a mutation in a specific gene(s) in this region may result in expression of the clinical phenotype. Thus, we conclude that a gene or genes in region 15q11q13 must be inherited from each parent for normal human development.  相似文献   

7.
8.
J E Brissenden  A Ullrich  U Francke 《Nature》1984,310(5980):781-784
Many of the actions previously attributed to pituitary-derived growth hormone are mediated by polypeptide growth factors. These include the insulin-like growth factors I and II (IGF-I and IGF-II), which are members of the insulin family of proteins. We report here the chromosomal mapping of the human genes for IGF-I and IGF-II. IGF-II maps to the short arm of chromosome 11, which also contains the gene for insulin and the proto-oncogene c-Ha-ras1 (ref. 9). IGF-I maps to chromosome 12, which is evolutionarily related to chromosome 11 and carries the gene for the proto-oncogene c-Ki-ras2 (refs 10,44). We have also localized the human gene for an unrelated polypeptide hormone, epidermal growth factor, to chromosome 4q, in the same region as another specialized growth factor, T-cell growth factor. We speculate that these map assignments reflect the existence of gene families involved in growth control.  相似文献   

9.
10.
B Bressac  M Kew  J Wands  M Ozturk 《Nature》1991,350(6317):429-431
Hepatocellular carcinoma (HCC) is a prevalent cancer in sub-Saharan Africa and eastern Asia. Hepatitis B virus and aflatoxins are risk factors for HCC, but the molecular mechanism of human hepatocellular carcinogenesis is largely unknown. Abnormalities in the structure and expression of the tumour-suppressor gene p53 are frequent in HCC cell lines, and allelic losses from chromosome 17p have been found in HCCs from China and Japan. Here we report on allelic deletions from chromosome 17p and mutations of the p53 gene found in 50% of primary HCCs from southern Africa. Four of five mutations detected were G----T substitutions, with clustering at codon 249. This mutation specificity could reflect exposure to a specific carcinogen, one candidate being aflatoxin B1 (ref. 7), a food contaminant in Africa, which is both a mutagen that induces G to T substitution and a liver-specific carcinogen.  相似文献   

11.
12.
The human T-cell receptor alpha-chain gene maps to chromosome 14   总被引:7,自引:0,他引:7  
The T-cell receptor for antigen has been identified as a disulphide-linked heterodimeric glycoprotein of relative molecular mass (Mr) 90,000 comprising an alpha- and a beta-chain. The availability of complementary DNA clones encoding mouse and human beta-chains has allowed a detailed characterization of the genomic organization of the beta-chain gene family and has revealed that functional beta-chain genes in T cells are generated from recombination events involving variable (V), diversity (D), joining (J) and constant (C) gene segments. Recently, cDNA clones encoding mouse and human alpha-chains have been described; the sequences of these clones have indicated that functional alpha-chain genes are also generated from multiple gene segments. It is possible that chromosomal translocations involving T-cell receptor alpha- and beta-chain genes have a role in T-cell neoplasms in much the same way as translocations involving immunoglobulin genes are associated with oncogenic transformation in B cells. In the latter case, the chromosomal localization of the immunoglobulin genes provided one of the first indications of the involvement of such translocations in oncogenic transformation. The chromosomal assignment of the alpha- and beta-chain genes may, therefore, provide equally important clues for T-cell neoplastic transformation. The chromosomal location of the mouse and human beta-chain gene family has been determined: the murine gene lies on chromosome 6 (refs 12, 13) whereas the human gene is located on chromosome 7 (refs 13, 14). Here we use a cDNA clone encoding the human alph-chain to map the corresponding gene to chromosome 14.  相似文献   

13.
C T Denny  Y Yoshikai  T W Mak  S D Smith  G F Hollis  I R Kirsch 《Nature》1986,320(6062):549-551
Specific chromosomal aberrations are associated with specific types of cancer (for review see ref. 1). The distinctiveness of each association has led to the belief that these chromosomal aberrations are clues to oncogenic events or to the state of differentiation in the malignant cell type. Malignancies of T lymphocytes demonstrate such an association characterized most frequently by structural translocations or inversions of chromosomes 7 and 14 (refs 7-9). Analyses of these chromosomally marked tumours at the molecular level may therefore provide insight into the aetiology of the cancers as well as the mechanisms by which chromosomes break and rejoin. Here we report such an analysis of the tumour cell line SUP-T1 derived from a patient with childhood T-cell lymphoma carrying an inversion of one chromosome 14 between bands q11.2 and q32.3, that is, inv(14) (q11.2; q32.2). These are the same chromosomal bands to which the T-cell receptor alpha-chain (14q11.2) and the immunoglobulin heavy-chain locus (14q32.3) have been assigned. Our analysis reveals that this morphological inversion of chromosome 14 was mediated by a site-specific recombination event between an immunoglobulin heavy-chain variable region (Ig VH) and a T-cell receptor (TCR) alpha-chain joining segment (TCR J alpha). S1 nuclease analysis shows that this hybrid gene is transcribed into poly(A)+ RNA.  相似文献   

14.
One in 10,000 children develops Wilms' tumour, an embryonal malignancy of the kidney. Although most Wilms' tumours are sporadic, a genetic predisposition is associated with aniridia, genito-urinary malformations and mental retardation (the WAGR syndrome). Patients with this syndrome typically exhibit constitutional deletions involving band p13 of one chromosome 11 homologue. It is likely that these deletions overlap a cluster of separate but closely linked genes that control the development of the kidney, iris and urogenital tract (the WAGR complex). A discrete aniridia locus, in particular, has been defined within this chromosomal segment by a reciprocal translocation, transmitted through three generations, which interrupts 11p13. In addition, the specific loss of chromosome 11p alleles in sporadic Wilms' tumours has been demonstrated, suggesting that the WAGR complex includes a recessive oncogene, analogous to the retinoblastoma locus on chromosome 13. In WAGR patients, the inherited 11p deletion is thought to represent the first of two events required for the initiation of a Wilms' tumour, as suggested by Knudson from epidemiological data. We have now isolated the deleted chromosomes 11 from four WAGR patients in hamster-human somatic cell hybrids, and have tested genomic DNA from the hybrids with chromosome 11-specific probes. We show that 4 of 31 markers are deleted in at least one patient, but that of these markers, only the gene encoding the beta-subunit of follicle-stimulating hormone (FSHB) is deleted in all four patients. Our results demonstrate close physical linkage between FSHB and the WAGR locus, suggest a gene order for the four deleted markers and exclude other markers tested from this region. In hybrids prepared from a balanced translocation carrier with familial aniridia, the four markers segregate into proximal and distal groups. The translocation breakpoint, which identifies the position of the aniridia gene on 11p, is immediately proximal to FSHB, in the interval between FSHB and the catalase gene.  相似文献   

15.
Non-random tumour-specific chromosomal abnormalities have been observed in cells of many different human tumours. In Wilms' tumour (WT) and retinoblastoma, a chromosomal deletion occurs germinally or somatically and has been considered an important step in tumour development. One class of potential cellular transforming genes comprises the cellular homologues of the transforming genes of highly oncogenic retroviruses. A remarkable concordance between the chromosomal location of human cellular oncogenes and the breakpoints involved in acquired chromosomal translocations is becoming apparent in various cancers: the oncogenes c-mos, c-myc and c-abl are located at the breakpoints that occur in acute myeloblastic leukaemia, Burkitt's lymphoma and chronic myelocytic leukaemia respectively. Thus when the oncogene c-Ha-ras1 was localized to the short arm of human chromosome 11 (refs 6-8; region 11p11 leads to p15 and not 11p13 as stated in ref. 5), it was proposed as a possible aetiological agent in the aniridia-WT association (AWTA) that results from a deletion of 11p13 (although a transforming gene recently isolated from a WT cell line (G401) was shown not to be homologous to either c-Ha-ras or c-Ki-ras9). We have now looked for deletion or rearrangement of c-Ha-ras1 in the DNA from four subjects with del(11p13)-associated predisposition to Wilms' tumour, aniridia, genitourinary abnormalities and mental retardation. We report here that in no case is c-Ha-ras1 deleted, and we have further refined its location to 11p15.1 leads to 11p15.5. On the basis of enzyme studies and direct gene dosage determination for c-Ha-ras1 and beta-globin in neoplastic and non-neoplastic tissues from one patient, we conclude that deletion of the normal counterpart of 11p cannot account for the development of the tumour.  相似文献   

16.
17.
Li T  Chang CY  Jin DY  Lin PJ  Khvorova A  Stafford DW 《Nature》2004,427(6974):541-544
Vitamin K epoxide reductase (VKOR) is the target of warfarin, the most widely prescribed anticoagulant for thromboembolic disorders. Although estimated to prevent twenty strokes per induced bleeding episode, warfarin is under-used because of the difficulty of controlling dosage and the fear of inducing bleeding. Although identified in 1974 (ref. 2), the enzyme has yet to be purified or its gene identified. A positional cloning approach has become possible after the mapping of warfarin resistance to rat chromosome 1 (ref. 3) and of vitamin K-dependent protein deficiencies to the syntenic region of human chromosome 16 (ref. 4). Localization of VKOR to 190 genes within human chromosome 16p12-q21 narrowed the search to 13 genes encoding candidate transmembrane proteins, and we used short interfering RNA (siRNA) pools against individual genes to test their ability to inhibit VKOR activity in human cells. Here, we report the identification of the gene for VKOR based on specific inhibition of VKOR activity by a single siRNA pool. We confirmed that MGC11276 messenger RNA encodes VKOR through its expression in insect cells and sensitivity to warfarin. The expressed enzyme is 163 amino acids long, with at least one transmembrane domain. Identification of the VKOR gene extends our understanding of blood clotting, and should facilitate development of new anticoagulant drugs.  相似文献   

18.
D C Page  L G Brown  A de la Chapelle 《Nature》1987,328(6129):437-440
In most human 'XX males', DNA sequences normally found on Yp, the short arm of the Y chromosome, are present on Xp, the short arm of the X chromosome. To establish whether this transfer involves a terminal portion of Yp, and whether a terminal portion of Xp is lost in the process, we followed the inheritance of pseudoautosomal restriction fragment length polymorphisms in two XX-male families. One XX male apparently inherited the entire pseudoautosomal region of his father's Y chromosome and no part of the pseudoautosomal region of his father's X chromosome. The second XX male also inherited the entire pseudoautosomal region of his father's Y, but in addition inherited a proximal portion of the pseudoautosomal region of his father's X. These findings argue that XX males result from the transfer of a terminal portion of Yp onto Xp in exchange for a terminal portion of Xp (ref. 7). This implies that the testis-determining factor gene (TDF) maps distally in the strictly sex-linked portion of Yp, near the pseudoautosomal domain. The XX males described here appear to result from single (and, at least in the second case, unequal) crossovers proximal to the pseudoautosomal region on Yp and proximal to or within the pseudoautosomal region on Xp.  相似文献   

19.
X-chromosome inactivation in mammals is a regulatory phenomenon whereby one of the two X chromosomes in female cells is genetically inactivated, resulting in dosage compensation for X-linked genes between males and females. In both man and mouse, X-chromosome inactivation is thought to proceed from a single cis-acting switch region or inactivation centre (XIC/Xic). In the human, XIC has been mapped to band Xq13 (ref. 6) and in the mouse to band XD (ref. 7), and comparative mapping has shown that the XIC regions in the two species are syntenic. The recently described human XIST gene maps to the XIC region and seems to be expressed only from the inactive X chromosome. We report here that the mouse Xist gene maps to the Xic region of the mouse X chromosome and, using an interspecific Mus spretus/Mus musculus domesticus F1 hybrid mouse carrying the T(X;16)16H translocation, show that Xist is exclusively expressed from the inactive X chromosome. Conservation between man and mouse of chromosomal position and unique expression exclusively from the inactive X chromosome lends support to the hypothesis that XIST and its mouse homologue are involved in X-chromosome inactivation.  相似文献   

20.
M P Lefranc  T H Rabbitts 《Nature》1985,316(6027):464-466
The recent detailed analysis of genes that undergo rearrangement in T cells has shown that the T-cell receptor genes encoding alpha- and beta-chains are involved in specific alterations in T-cell DNA analogous to the immunoglobulin genes. A third type of gene, designated gamma, has been isolated from mouse cytotoxic T lymphocytes, and evidence suggest that the mouse displays very limited diversity in this gene system, having only three variable-region (V) genes and three constant-region (C) genes. The function of the so-called T-cell gamma gene is unknown. We have isolated genomic genes encoding the human homologue of the mouse T-cell gamma gene; as there is no evidence that this T-cell rearranging gene is anything to do with the T3 molecule, we have designated the human T-cell rearranging gene as TRG gamma (ref. 13), to avoid confusion with the T3 gamma-chain, and have shown that the gene locus maps to chromosome 7 in humans. We now report that human DNA contains two tandemly arranged TRG gamma constant-region genes about 16 kilobases apart. These two genes show multiple rearrangement patterns in a variety of T cells, including helper and cytotoxic/suppressor type, as well as in all forms of T-cell leukaemia. Our results indicate variability of this T-cell gene system in man compared with the analogous system in mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号