首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
本文采用单点测试和连续测试2种方法,针对3条自然通风和2条机械通风公路隧道使用TSI7575-X型空气品质仪和KIMO-VT200型风速测试仪开展现场实测,获取隧道内温度、风速、CO和CO2浓度分布状况,并采用实测结果与已有的理论模型进行对比验证.结果表明:活塞风存在于所有隧道内,但机械通风隧道的活塞效应优于自然通风隧道;从入口到出口,所有隧道的温度、CO和CO2浓度均上升;隧道内风速主要依赖于车速(vt)和开口率(Rf),最大CO浓度随车速的降低和隧道长度的延长而增大,但受开口率的影响较小;CO的安全浓度标准依赖于人员暴露时间,在20km/h和1 700辆/h车道条件下,所允许的隧道长度可达到3 000 m.  相似文献   

2.
汽车尾气的主要成分是CO气体,是公路隧道通风设计的一项重要参数。准确、快速地预测隧道内CO气体浓度,能够为隧道通风控制提供有力参考,有助于CO气体浓度的及时控制,对保障隧道内人员的健康、安全和隧道绿色节能十分必要。采用公路隧道实地监测CO气体浓度数据,建立了以监测点位置、交通量、车速、风速为输入特征的公路隧道CO气体浓度预测随机森林模型。通过整理3 300 m长隧道CO气体浓度数据,对比了CO气体浓度实测数据与模型预测值,验证了模型的预测精度。结果表明,基于随机森林建立的CO气体浓度预测模型具有良好的预测精度,能够准确地预测隧道内CO气体浓度,测试集的均方根误差(root mean square error, RMSE)和决定系数R2分别为0.497 4和0.943 7;该预测模型性能显著优于线性回归模型和支持向量机模型;预测模型能够推广应用于其他隧道的CO气体浓度预测,对应的RMSE和R2分别为0.909 5和0.729 5,可以在已知测点位置、交通量、车速、风速的情况下预判隧道内CO气体浓度,为隧道通风控制或安全预警提供数据参考;特征重要...  相似文献   

3.
基于差分形式的用于计算一定环境CO浓度及暴露时间下人体血液中碳氧血红蛋白饱和度的Coburn-Forster-Kane方程(CFK方程),结合不同形式横向通风隧道CO浓度分布特性,拟合了适用于正常运营工况下CO浓度限值计算式,对于送风型半横向通风隧道给出事故通风CO浓度指示值计算式.计算结果显示全横向通风隧道与送风型半横向通风隧道可采用同一CO浓度限值,排风型半横向通风隧道可采用三倍该CO浓度作为限值.  相似文献   

4.
为解决设施园艺中二氧化碳( CO2) 浓度的检测与控制问题,研制了一种基于钠超离子导体( NASICON) 固体电解质传感器的温室CO2测控系统,该系统包括CO2测量节点、无线通信网络和控制终端。采用STM32 微处理器处理采集到的CO2 浓度信息,使用模糊比例-积分-微分( PID: Proportional Integration Differential) 算法控制CO2气体的释放,从而智能调节温室内CO2气体的浓度,使其达到作物所需数值。在实验室条件下,对设计的CO2传感器节点进行了标定和稳定性测试。对体积分数为400 × 10 - 6 和1 000 × 10 - 6 的CO2气体样品分别进行了> 8 h 的长时间浓度测量,其相对波动小于2. 5%。在国信集团现代农业基地温室对所研制的CO2浓度测控系统进行实地测试的结果显示,当设定的CO2浓度的期望值为800 × 10 - 6 时,调控后CO2体积分数的波动范围约为± 40 × 10 - 6。现场应用试验表明,该系统具有较好的实用性,且成本低廉、集成度高,具有一定的推广价值。  相似文献   

5.
空调列车车厢内空气品质不佳的主要原因是由于车厢内的新风量不足导致CO2浓度偏高.以车厢内CO2浓度为控制对象,实现对新风量的控制.通过对硬座车厢内的CO2浓度控制系统建立数学模型,并采用PID控制,在simulink环境下对空调列车车厢内的CO2浓度进行了仿真控制,使其维持在设定浓度1500×10-6,达到合理控制新风量的目的,对今后改善列车车厢内空气品质提供了重要的理论依据.图5,参5.  相似文献   

6.
针对杭州—黄山铁路天目山隧道作业过程中出现的放射性物质险情,采用天然放射性法对事故区域进行辐射环境专项调查并提出相应防治措施.调查结果表明:掌子面γ辐射剂量大于规范限定值,地表放射性核素含量238U处于高背景区,232Th、40K处于低背景区,属于偏铀型,系炭质泥岩吸附大量的铀所致;隧道地质构造破碎带引起氡的富集,部分地段土壤平均氡浓度超出规范限定值,隧道内的空气平均氡浓度属于正常浓度区.在隧道施工过程中进行放射性物质监测,同时加强洞内通风以降低空气氡浓度.  相似文献   

7.
根据大气扩散方程建立了公路隧道内空气质量方程和方程中相关参数,并导出了计算自然通风、纵向通风、全横向通风和半横向通风隧道内空气污染物浓度分布的解析解.实例计算了中国3座营运公路隧道内的CO浓度值与其实测浓度值之间有良好的线性关系,其相关系数的平方R2在0.849 9~0.923 1之间.  相似文献   

8.
对重庆市典型城市隧道内的环境空气质量进行了调查.结果表明:隧道内SO2,NO2,CO和颗粒物的平均浓度分别为环境空气中的1.7,2.9,5.5和3.9倍,污染较为严重.随着机动车保有量的增加,2013年隧道内空气污染有所加重,NO2,CO和NMHC的浓度分别是2010年的3.0,1.1和2.0倍.隧道中部NHMC和总VOC的浓度要高于洞口,而PM10和CH4的浓度则是洞口略高.隧道内CO的浓度变化与车流量有着十分密切的联系,PM2.5与车流量的相关性要好于PM10.  相似文献   

9.
依托西格二线新关角隧道工程,基于关角隧道地区实测气象资料,利用流体计算软件FLUENT,采用三维k-ε湍流非稳态模型,对不同海拔高度地区铁路隧道内施工期有害气体运移特性和质量浓度分布规律进行数值模拟计算分析。研究结果表明:考虑湿度与不考虑湿度对空气密度计算结果影响误差为0.3%左右,可以忽略不计;有害气体在隧道内向洞口运移的动态过程中,最高质量浓度逐渐降低、体积逐渐增大,在隧道内呈U型分布;随着海拔高度增加,由于环境气压的影响,同一测点有害气体质量浓度随海拔高度以指数形式增大,CO增加倍数可按K=eh/104进行计算,且达到容许质量浓度的时间增加。  相似文献   

10.
为解决高海拔施工隧道出渣过程的排气排放物污染,改善通风排污效果,基于海拔环境参数变化和紊流扩散理论,构建了高海拔隧道气体扩散模型.以海拔3200 m的川藏铁路某隧道为研究背景,对洞内的环境参数和CO分布进行测定,利用SolidWorks和ANSYS建立施工隧道掌子面出渣模型,采用Fluent中的组分输运方程,对不同海拔高度的有害气体运移规律和质量分数分布进行动态模拟.结果表明,隧道中内燃机械作业时,在靠近工作面迎头位置,CO分布不均匀,极差值较大.在靠近隧道出口方向,CO分布逐渐趋于平稳.CO质量分数随海拔的升高而增加,而CO质量浓度却呈相反的变化趋势.从0 m到6 km,CO质量分数上升了96%;由于环境参数变化对CO质量浓度影响的权重大于CO排放量,导致CO质量浓度下降了18%.在保证隧道内CO质量分数不变的条件下,需风量随海拔高度呈非线性增加.根据得到的需风量计算模型,在海拔3200 m时,需风量约为4.95 m3/(kW·min).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号