首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Within hours of birth, some physical properties of liver lysosomes are modified. These alterations, which may be related to the autophagic vacuoles formation known to occur during this period, were inhibited by insulin administration. Glucagon, a potent inducer of autophagy in adult rat liver, did not anticipate this process in fetal liver. Our results suggest that the decrease of plasma insulin immediately after birth is a important factor in the development of hepatic autophagy.  相似文献   

2.
H Iwata  H Tonomura  T Matsuda 《Experientia》1988,44(9):780-781
Rat brain transketolase showed little change in activity from birth to adulthood, whereas the liver enzyme activity increased in a biphasic way. In both brain and liver, 2-oxoglutarate dehydrogenase activity increased gradually after birth and reached a plateau at 5 weeks of age. A developmental change in thiamin content in the brain was similar to the change in the 2-oxoglutarate dehydrogenase activity, but this was not the case in the liver.  相似文献   

3.
Summary Rat brain transketolase showed little change in activity from birth to adulthood, whereas the liver enzyme activity increased in a biphasic way. In both brain and liver, 2-oxoglutarate dehydrogenase activity increased gradually after birth and reached a plateau at 5 weeks of age. A developmental change in thiamin content in the brain was similar to the change in the 2-oxoglutarate dehydrogenase activity, but this was not the case in the liver.  相似文献   

4.
Summary I.v. administration of lysine acetylsalicylate inces autophagy in mouse liver cells. Single and multiple membrane-bounded vacuoles were found. The latter seems to be an unusual morphological form of the sequestration process. These findings could express a transitory sublethal liver cell injury induced by the drug.Acknowledgments. The authors are indebted to Mrs M. T. Correia and to Mrs M. E. Pereira for technical assistance.  相似文献   

5.
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.  相似文献   

6.
Autophagy is a degradative mechanism mainly involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. Over the last years, yeast genetic screens have considerably increased our knowledge about the molecular mechanisms of autophagy, and a number of genes involved in fundamental steps of the autophagic pathway have been identified. Most of these autophagy genes are present in higher eukaryotes indicating that this process has been evolutionarily conserved. In yeast, autophagy is mainly involved in adaptation to starvation, but in multicellular organisms this route has emerged as a multifunctional pathway involved in a variety of additional processes such as programmed cell death, removal of damaged organelles and development of different tissue-specific functions. Furthermore, autophagy is associated with a growing number of pathological conditions, including cancer, myopathies and neurodegenerative disorders. The physiological and pathological roles of autophagy, as well as the molecular mechanisms underlying this multifunctional pathway, are discussed in this review.Received 12 January 2004; received after revision 29 January 2004; accepted 4 February 2004  相似文献   

7.
8.
Axon degeneration is a pathophysiological process of axonal dying and breakdown, which is characterized by several morphological features including the accumulation of axoplasmic organelles, disassembly of microtubules, and fragmentation of the axonal cytoskeleton. Autophagy, a highly conserved lysosomal-degradation machinery responsible for the control of cellular protein quality, is widely believed to be essential for the maintenance of axonal homeostasis in neurons. In recent years, more and more evidence suggests that dysfunctional autophagy is associated with axonal degeneration in many neurodegenerative diseases. Here, we review the core machinery of autophagy in neuronal cells, and provide several major steps that interfere with autophagy flux in neurodegenerative conditions. Furthermore, this review highlights the potential role of neuronal autophagy in axon degeneration, and presents some possible molecular mechanisms by which dysfunctional autophagy leads to axon degeneration in pathological conditions.  相似文献   

9.
The development and hormonal regulation of thioredoxin and of the thioredoxin-reductase system were investigated during the perinatal period in rat liver. An immunological procedure was developed in order to quantify thioredoxin in fetal and neonatal hepatocytes. Both immunoreactive thioredoxin and thioredoxin-reductase activity appeared on day 16.5 of pregnancy. The level of immunoreactive thioredoxin increased during the late fetal period, and its level was the same 24 h after birth. Moreover, its development was not subjected to hormonal regulation by corticosteroids and glucagon. In contrast, thioredoxin-reductase activity increased 3 times during the late fetal period and presented a marked increase 24 h after birth. In the absence of glucocorticoids there was no increase in the level of thioredoxin reductase, while administration of hydrocortisone acetate and glucagon to fetuses prematurely evoked its activity. This study suggests that if thioredoxin acts physiologically, this activity is related to the state of reduction of the molecule rather than to the total concentration in the liver.  相似文献   

10.
Summary The development and hormonal regulation of thioredoxin and of the thioredoxin-reductase system were investigated during the perinatal period in rat liver. An immunological procedure was developed in order to quantify thioredoxin in fetal and neonatal hepatocytes. Both immunoreactive thioredoxin and thioredoxin-reductase activity appeared on day 16.5 of pregnancy. The level of immunoreactive thioredoxin increased during the late fetal period, and its level was the same 24 h after birth. Moreover, its development was not subjected to hormonal regulation by corticosteroids and glucagon. In contrast, thioredoxin-reductase activity increased 3 times during the late fetal period and presented a marked increase 24 h after birth. In the absence of glucocorticoids there was no increase in the level of thioredoxin reductase, while administration of hydrocortisone acetate and glucagon to fetuses prematurely evoked its activity. This study suggests that if thioredoxin acts physiologically, this activity is related to the state of reduction of the molecule rather than to the total concentration in the liver.  相似文献   

11.
The distribution of two lysosomal markers (beta-acetylglucosaminidase and acid phosphatase) between liver fractions was studied in the newborn Rat. The results indicate that after birth the hydrolase-bearing particles increased in size and had a lower density than the primary lysosomes. These modifications may be related to the autophagic-vacuole formation known to occur during this period.  相似文献   

12.
Summary The activity of enzyme monoamine oxidase was studied from 3 days before birth up to 2 days after birth in the heart, liver and kidney of albino rabbits. At the end of ftal life, the MAO activity of heart and liver expressed per unit of organ weight was nearly the same as the adult one. At birth and 1 day, the activity showed decrease in the 3 organs. The possible causes of these decreases are discussed.

Remerciements. Nous remercions MM. les ProfesseursChevallier et Jost de nous avoir permis d'utiliser certains appareils de leur laboratoire.  相似文献   

13.
A growing number of publications show that apoptosis induction is often associated with increased autophagy indicating the existence of an interplay between these two important cellular events. The simultaneous activation of both phenomena has been detected not only in experimental settings but also in vivo under physiological and pathological conditions. Despite these studies, the reciprocal influence of the two pathways in vivo has still not been completely understood. It is clear that autophagy and apoptosis are strictly interconnected, as highlighted by the finding that the two pathways share key molecular regulators. Many novel aspects of the crosstalk between apoptosis and autophagy have recently emerged showing how complex is this relationship and how critical is for the overall fate of the cell. In this mini-review we will focus on some key experiments trying to decipher as to whether autophagy contributes to apoptosis modulation in vivo.  相似文献   

14.
Toll-like receptor (TLR) signaling is linked to autophagy that facilitates elimination of intracellular pathogens. However, it is largely unknown whether autophagy controls TLR signaling. Here, we report that poly(I:C) stimulation induces selective autophagic degradation of the TLR adaptor molecule TRIF and the signaling molecule TRAF6, which is revealed by gene silencing of the ubiquitin-editing enzyme A20. This type of autophagy induced formation of autophagosomes and could be suppressed by an autophagy inhibitor and lysosomal inhibitors. However, this autophagy was not associated with canonical autophagic processes, including involvement of Beclin-1 and conversion of LC3-I to LC3-II. Through screening of TRIF-interacting ‘autophagy receptors’ in human cells, we identified that NDP52 mediated the selective autophagic degradation of TRIF and TRAF6 but not TRAF3. NDP52 was polyubiquitinated by TRAF6 and was involved in aggregation of TRAF6, which may result in the selective degradation. Intriguingly, only under the condition of A20 silencing, NDP52 could effectively suppress poly(I:C)-induced proinflammatory gene expression. Thus, this study clarifies a selective autophagic mechanism mediated by NDP52 that works downstream of TRIF–TRAF6. Furthermore, although A20 is known as a signaling fine-tuner to prevent excess TLR signaling, it paradoxically downregulates the fine-tuning effect of NDP52 on TLR signaling.  相似文献   

15.
Autophagy is a constitutive lysosomal catabolic pathway that degrades damaged organelles and protein aggregates. Stem cells are characterized by self-renewal, pluripotency, and quiescence; their long life span, limited capacity to dilute cellular waste and spent organelles due to quiescence, along with their requirement for remodeling in order to differentiate, all suggest that they require autophagy more than other cell types. Here, we review the current literature on the role of autophagy in embryonic and adult stem cells, including hematopoietic, mesenchymal, and neuronal stem cells, highlighting the diverse and contrasting roles autophagy plays in their biology. Furthermore, we review the few studies on stem cells, lysosomal activity, and autophagy. Novel techniques to detect autophagy in primary cells are required to study autophagy in different stem cell types. These will help to elucidate the importance of autophagy in stem cells during transplantation, a promising therapeutic approach for many diseases.  相似文献   

16.
A thiol: protein disulfide oxidoreductase from bovine liver was isolated after separation from protein disulfide isomerase. The enzyme, after activation (reduction) with glutathione, was reacted with stoichiometric amounts of insulin and the sulfhydryl groups of the partially reduced hormone were labeled with iodo (l-14C)acetamide. After separation of the insulin chains, the radioactivity was found in both the peptides, with a ratio A-chain/B-chain equal to 2/1.  相似文献   

17.
Autophagy is an evolutionarily conserved, multi-step lysosomal degradation process for the clearance of damaged or superfluous proteins and organelles. Accumulating studies have recently revealed that autophagy is closely related to a variety of types of cancer; however, elucidation of its Janus role of either tumor-suppressive or tumor-promoting still remains to be discovered. In this review, we focus on summarizing the context-dependent role of autophagy and its complicated molecular mechanisms in different types of cancer. Moreover, we discuss a series of small-molecule compounds targeting autophagy-related proteins or the autophagic process for potential cancer therapy. Taken together, these findings would shed new light on exploiting the intricate mechanisms of autophagy and relevant small-molecule compounds as potential anti-cancer drugs to improve targeted cancer therapy.  相似文献   

18.
Stearoyl CoA desaturase activity in liver microsomes, and insulin, thyroxine, and triiodothyronine levels in serum were measured after administration of streptozocin (STZ) and its antagonists to rats. The effect of STZ, which caused hyperglycemia and inhibited the desaturase activity, was antagonized by 2-desoxyglucose and 3-O-methyl-glucose; 1-O-methyl-3-desoxyglucose and 1-O-methyl-3-O-methylglucose were without any effect. The enzyme activity plotted against insulin levels showed a broad sigmoidal curve, whereas the activities versus thyroid hormone levels showed steeper sigmoidal curves.  相似文献   

19.
Summary A thiol:protein disulfide oxidoreductase from bovine liver was isolated after separation from protein disulfide isomerase. The enzyme, after activation (reduction) with glutathione, was reacted with stoichiometric amounts of insulin and the sulfhydryl groups of the partially reduced hormone were labeled with iodo (l-14C)acetamide. After separation of the insulin chains, the radioactivity was found in both the peptides, with a ratio A-chain/B-chain equal to 2/1.  相似文献   

20.
Autophagy takes part in regulating the eukaryotic cells function and the progression of numerous diseases, but its clinical utility has not been fully developed yet. Recently, mounting evidences highlight an important correlation between autophagy and bone homeostasis, mediated by osteoclasts, osteocytes, bone marrow mesenchymal stem cells, and osteoblasts, and autophagy plays a vital role in the pathogenesis of glucocorticoid-induced osteoporosis (GIOP). The combinations of autophagy activators/inhibitors with anti-GIOP first-line drugs or some new autophagy-based manipulators, such as regulation of B cell lymphoma 2 family proteins and caspase-dependent clearance of autophagy-related gene proteins, are likely to be the promising approaches for GIOP clinical treatments. In view of the important role of autophagy in the pathogenesis of GIOP, here we review the potential mechanisms about the impacts of autophagy in GIOP and its association with GIOP therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号