首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3?? resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways.  相似文献   

2.
Frank J  Agrawal RK 《Nature》2000,406(6793):318-322
The ribosome is a macromolecular assembly that is responsible for protein biosynthesis following genetic instructions in all organisms. It is composed of two unequal subunits: the smaller subunit binds messenger RNA and the anticodon end of transfer RNAs, and helps to decode the mRNA; and the larger subunit interacts with the amino-acid-carrying end of tRNAs and catalyses the formation of the peptide bonds. After peptide-bond formation, elongation factor G (EF-G) binds to the ribosome, triggering the translocation of peptidyl-tRNA from its aminoacyl site to the peptidyl site, and movement of mRNA by one codon. Here we analyse three-dimensional cryo-electron microscopy maps of the Escherichia coli 70S ribosome in various functional states, and show that both EF-G binding and subsequent GTP hydrolysis lead to ratchet-like rotations of the small 30S subunit relative to the large 50S subunit. Furthermore, our finding indicates a two-step mechanism of translocation: first, relative rotation of the subunits and opening of the mRNA channel following binding of GTP to EF-G; and second, advance of the mRNA/(tRNA)2 complex in the direction of the rotation of the 30S subunit, following GTP hydrolysis.  相似文献   

3.
Gutmann S  Haebel PW  Metzinger L  Sutter M  Felden B  Ban N 《Nature》2003,424(6949):699-703
Accurate translation of genetic information into protein sequence depends on complete messenger RNA molecules. Truncated mRNAs cause synthesis of defective proteins, and arrest ribosomes at the end of their incomplete message. In bacteria, a hybrid RNA molecule that combines the functions of both transfer and messenger RNAs (called tmRNA) rescues stalled ribosomes, and targets aberrant, partially synthesized, proteins for proteolytic degradation. Here we report the 3.2-A-resolution structure of the tRNA-like domain of tmRNA (tmRNA(Delta)) in complex with small protein B (SmpB), a protein essential for biological functions of tmRNA. We find that the flexible RNA molecule adopts an open L-shaped conformation and SmpB binds to its elbow region, stabilizing the single-stranded D-loop in an extended conformation. The most striking feature of the structure of tmRNA(Delta) is a 90 degrees rotation of the TPsiC-arm around the helical axis. Owing to this unusual conformation, the SmpB-tmRNA(Delta) complex positioned into the A-site of the ribosome orients SmpB towards the small ribosomal subunit, and directs tmRNA towards the elongation-factor binding region of the ribosome. On the basis of this structure, we propose a model for the binding of tmRNA on the ribosome.  相似文献   

4.
Simonson AB  Lake JA 《Nature》2002,416(6878):281-285
During decoding, a codon of messenger RNA is matched with its cognate aminoacyl-transfer RNA and the amino acid carried by the tRNA is added to the growing protein chain. Here we propose a molecular mechanism for the decoding phase of translation: the transorientation hypothesis. The model incorporates a newly identified tRNA binding site and utilizes a flip between two tRNA anticodon loop structures, the 5'-stacked and the 3'-stacked conformations. The anticodon loop acts as a three-dimensional hinge permitting rotation of the tRNA about a relatively fixed codon-anticodon pair. This rotation, driven by a conformational change in elongation factor Tu involving GTP hydrolysis, transorients the incoming tRNA into the A site from the D site of initial binding and decoding, where it can be proofread and accommodated. The proposed mechanisms are compatible with the known structures, conformations and functions of the ribosome and its component parts including tRNAs and EF-Tu, in both the GTP and GDP states.  相似文献   

5.
The elongation cycle of protein synthesis involves the delivery of aminoacyl-transfer RNAs to the aminoacyl-tRNA-binding site (A?site) of the ribosome, followed by peptide-bond formation and translocation of the tRNAs through the ribosome to reopen the A?site. The translocation reaction is catalysed by elongation factor G (EF-G) in a GTP-dependent manner. Despite the availability of structures of various EF-G-ribosome complexes, the precise mechanism by which tRNAs move through the ribosome still remains unclear. Here we use multiparticle cryoelectron microscopy analysis to resolve two previously unseen subpopulations within Thermus thermophilus EF-G-ribosome complexes at subnanometre resolution, one of them with a partly translocated tRNA. Comparison of these substates reveals that translocation of tRNA on the 30S subunit parallels the swivelling of the 30S head and is coupled to unratcheting of the 30S body. Because the tRNA maintains contact with the peptidyl-tRNA-binding site (P?site) on the 30S head and simultaneously establishes interaction with the exit site (E?site) on the 30S platform, a novel intra-subunit 'pe/E' hybrid state is formed. This state is stabilized by domain?IV of EF-G, which interacts with the swivelled 30S-head conformation. These findings provide direct structural and mechanistic insight into the 'missing link' in terms of tRNA intermediates involved in the universally conserved translocation process.  相似文献   

6.
The RNA polymerase elongation complex (EC) is both highly stable and processive, rapidly extending RNA chains for thousands of nucleotides. Understanding the mechanisms of elongation and its regulation requires detailed information about the structural organization of the EC. Here we report the 2.5-A resolution structure of the Thermus thermophilus EC; the structure reveals the post-translocated intermediate with the DNA template in the active site available for pairing with the substrate. DNA strand separation occurs one position downstream of the active site, implying that only one substrate at a time can specifically bind to the EC. The upstream edge of the RNA/DNA hybrid stacks on the beta'-subunit 'lid' loop, whereas the first displaced RNA base is trapped within a protein pocket, suggesting a mechanism for RNA displacement. The RNA is threaded through the RNA exit channel, where it adopts a conformation mimicking that of a single strand within a double helix, providing insight into a mechanism for hairpin-dependent pausing and termination.  相似文献   

7.
Demeshkina N  Jenner L  Westhof E  Yusupov M  Yusupova G 《Nature》2012,484(7393):256-259
During protein synthesis, the ribosome accurately selects transfer RNAs (tRNAs) in accordance with the messenger RNA (mRNA) triplet in the decoding centre. tRNA selection is initiated by elongation factor Tu, which delivers tRNA to the aminoacyl tRNA-binding site (A site) and hydrolyses GTP upon establishing codon-anticodon interactions in the decoding centre. At the following proofreading step the ribosome re-examines the tRNA and rejects it if it does not match the A codon. It was suggested that universally conserved G530, A1492 and A1493 of 16S ribosomal RNA, critical for tRNA binding in the A site, actively monitor cognate tRNA, and that recognition of the correct codon-anticodon duplex induces an overall ribosome conformational change (domain closure). Here we propose an integrated mechanism for decoding based on six X-ray structures of the 70S ribosome determined at 3.1-3.4?? resolution, modelling cognate or near-cognate states of the decoding centre at the proofreading step. We show that the 30S subunit undergoes an identical domain closure upon binding of either cognate or near-cognate tRNA. This conformational change of the 30S subunit forms a decoding centre that constrains the mRNA in such a way that the first two nucleotides of the A codon are limited to form Watson-Crick base pairs. When U·G and G·U mismatches, generally considered to form wobble base pairs, are at the first or second codon-anticodon position, the decoding centre forces this pair to adopt the geometry close to that of a canonical C·G pair. This by itself, or with distortions in the codon-anticodon mini-helix and the anticodon loop, causes the near-cognate tRNA to dissociate from the ribosome.  相似文献   

8.
Translation initiation, the rate-limiting step of the universal process of protein synthesis, proceeds through sequential, tightly regulated steps. In bacteria, the correct messenger RNA start site and the reading frame are selected when, with the help of initiation factors IF1, IF2 and IF3, the initiation codon is decoded in the peptidyl site of the 30S ribosomal subunit by the fMet-tRNA(fMet) anticodon. This yields a 30S initiation complex (30SIC) that is an intermediate in the formation of the 70S initiation complex (70SIC) that occurs on joining of the 50S ribosomal subunit to the 30SIC and release of the initiation factors. The localization of IF2 in the 30SIC has proved to be difficult so far using biochemical approaches, but could now be addressed using cryo-electron microscopy and advanced particle separation techniques on the basis of three-dimensional statistical analysis. Here we report the direct visualization of a 30SIC containing mRNA, fMet-tRNA(fMet) and initiation factors IF1 and GTP-bound IF2. We demonstrate that the fMet-tRNA(fMet) is held in a characteristic and precise position and conformation by two interactions that contribute to the formation of a stable complex: one involves the transfer RNA decoding stem which is buried in the 30S peptidyl site, and the other occurs between the carboxy-terminal domain of IF2 and the tRNA acceptor end. The structure provides insights into the mechanism of 70SIC assembly and rationalizes the rapid activation of GTP hydrolysis triggered on 30SIC-50S joining by showing that the GTP-binding domain of IF2 would directly face the GTPase-activated centre of the 50S subunit.  相似文献   

9.
Numata T  Ikeuchi Y  Fukai S  Suzuki T  Nureki O 《Nature》2006,442(7101):419-424
Uridine at the first anticodon position (U34) of glutamate, lysine and glutamine transfer RNAs is universally modified by thiouridylase into 2-thiouridine (s2U34), which is crucial for precise translation by restricting codon-anticodon wobble during protein synthesis on the ribosome. However, it remains unclear how the enzyme incorporates reactive sulphur into the correct position of the uridine base. Here we present the crystal structures of the MnmA thiouridylase-tRNA complex in three discrete forms, which provide snapshots of the sequential chemical reactions during RNA sulphuration. On enzyme activation, an alpha-helix overhanging the active site is restructured into an idiosyncratic beta-hairpin-containing loop, which packs the flipped-out U34 deeply into the catalytic pocket and triggers the activation of the catalytic cysteine residues. The adenylated RNA intermediate is trapped. Thus, the active closed-conformation of the complex ensures accurate sulphur incorporation into the activated uridine carbon by forming a catalytic chamber to prevent solvent from accessing the catalytic site. The structures of the complex with glutamate tRNA further reveal how MnmA specifically recognizes its three different tRNA substrates. These findings provide the structural basis for a general mechanism whereby an enzyme incorporates a reactive atom at a precise position in a biological molecule.  相似文献   

10.
11.
Stimulatory effect of splicing factors on transcriptional elongation.   总被引:28,自引:0,他引:28  
Y W Fong  Q Zhou 《Nature》2001,414(6866):929-933
  相似文献   

12.
K Forchhammer  W Leinfelder  A B?ck 《Nature》1989,342(6248):453-456
During the biosynthesis of selenoproteins in both prokaryotes and eukaryotes, selenocysteine is cotranslationally incorporated into the nascent polypeptide chain through a process directed by a UGA codon that normally functions as a stop codon. Recently, four genes have been identified whose products are required for selenocysteine incorporation in Escherichia coli. One of these genes, selC, codes for a novel transfer RNA species (tRNAUCA) that accepts serine and cotranslationally inserts selenocysteine by recognizing the specific UGA codon. The serine residue attached to this tRNA is converted to selenocysteine in a reaction dependent on functional selA and selD gene products. By contrast, the selB gene product (SELB) is not required until after selenocysteyl-tRNA biosynthesis. Here we present evidence indicating that SELB is a novel translation factor. The deduced amino-acid sequence of SELB exhibits extensive homology with the sequences of the translation initiation factor-2 (IF-2) and elongation factor Tu (EF-Tu). Furthermore, purified SELB protein binds guanine nucleotides in a 1:1 molar ratio and specifically complexes selenocysteyl-tRNAUCA, but does not interact with seryl-tRNAUCA. Thus, SELB could be an amino acid-specific elongation factor, replacing EF-Tu in a special translational step.  相似文献   

13.
Termination of protein synthesis occurs when the messenger RNA presents a stop codon in the ribosomal aminoacyl (A) site. Class I release factor proteins (RF1 or RF2) are believed to recognize stop codons via tripeptide motifs, leading to release of the completed polypeptide chain from its covalent attachment to transfer RNA in the ribosomal peptidyl (P) site. Class I RFs possess a conserved GGQ amino-acid motif that is thought to be involved directly in protein-transfer-RNA bond hydrolysis. Crystal structures of bacterial and eukaryotic class I RFs have been determined, but the mechanism of stop codon recognition and peptidyl-tRNA hydrolysis remains unclear. Here we present the structure of the Escherichia coli ribosome in a post-termination complex with RF2, obtained by single-particle cryo-electron microscopy (cryo-EM). Fitting the known 70S and RF2 structures into the electron density map reveals that RF2 adopts a different conformation on the ribosome when compared with the crystal structure of the isolated protein. The amino-terminal helical domain of RF2 contacts the factor-binding site of the ribosome, the 'SPF' loop of the protein is situated close to the mRNA, and the GGQ-containing domain of RF2 interacts with the peptidyl-transferase centre (PTC). By connecting the ribosomal decoding centre with the PTC, RF2 functionally mimics a tRNA molecule in the A site. Translational termination in eukaryotes is likely to be based on a similar mechanism.  相似文献   

14.
Klaholz BP  Myasnikov AG  Van Heel M 《Nature》2004,427(6977):862-865
Termination of protein synthesis by the ribosome requires two release factor (RF) classes. The class II RF3 is a GTPase that removes class I RFs (RF1 or RF2) from the ribosome after release of the nascent polypeptide. RF3 in the GDP state binds to the ribosomal class I RF complex, followed by an exchange of GDP for GTP and release of the class I RF. As GTP hydrolysis triggers release of RF3 (ref. 4), we trapped RF3 on Escherichia coli ribosomes using a nonhydrolysable GTP analogue. Here we show by cryo-electron microscopy that the complex can adopt two different conformational states. In 'state 1', RF3 is pre-bound to the ribosome, whereas in 'state 2' RF3 contacts the ribosome GTPase centre. The transfer RNA molecule translocates from the peptidyl site in state 1 to the exit site in state 2. This translocation is associated with a large conformational rearrangement of the ribosome. Because state 1 seems able to accommodate simultaneously both RF3 and RF2, whose position is known from previous studies, we can infer the release mechanism of class I RFs.  相似文献   

15.
16.
17.
Messenger-RNA-directed protein synthesis is accomplished by the ribosome. In eubacteria, this complex process is initiated by a specialized transfer RNA charged with formylmethionine (tRNA(fMet)). The amino-terminal formylated methionine of all bacterial nascent polypeptides blocks the reactive amino group to prevent unfavourable side-reactions and to enhance the efficiency of translation initiation. The first enzymatic factor that processes nascent chains is peptide deformylase (PDF); it removes this formyl group as polypeptides emerge from the ribosomal tunnel and before the newly synthesized proteins can adopt their native fold, which may bury the N terminus. Next, the N-terminal methionine is excised by methionine aminopeptidase. Bacterial PDFs are metalloproteases sharing a conserved N-terminal catalytic domain. All Gram-negative bacteria, including Escherichia coli, possess class-1 PDFs characterized by a carboxy-terminal alpha-helical extension. Studies focusing on PDF as a target for antibacterial drugs have not revealed the mechanism of its co-translational mode of action despite indications in early work that it co-purifies with ribosomes. Here we provide biochemical evidence that E. coli PDF interacts directly with the ribosome via its C-terminal extension. Crystallographic analysis of the complex between the ribosome-interacting helix of PDF and the ribosome at 3.7 A resolution reveals that the enzyme orients its active site towards the ribosomal tunnel exit for efficient co-translational processing of emerging nascent chains. Furthermore, we have found that the interaction of PDF with the ribosome enhances cell viability. These results provide the structural basis for understanding the coupling between protein synthesis and enzymatic processing of nascent chains, and offer insights into the interplay of PDF with the ribosome-associated chaperone trigger factor.  相似文献   

18.
Human U2 snRNA can function in pre-mRNA splicing in yeast   总被引:12,自引:0,他引:12  
E O Shuster  C Guthrie 《Nature》1990,345(6272):270-273
The removal of introns from messenger RNA precursors requires five small nuclear RNAs (snRNAs), contained within ribonucleoprotein particles (snRNPs), which complex with the pre-mRNA and other associated factors to form the spliceosome. In both yeast and mammals, the U2 snRNA base pairs with sequences surrounding the site of lariat formation. Binding of U2 snRNP to the highly degenerate branchpoint sequence in mammalian introns is absolutely dependent on an auxiliary protein, U2AF, which recognizes a polypyrimidine stretch adjacent to the 3' splice site. The absence of this sequence motif in yeast introns has strengthened arguments that the two systems are fundamentally different. Deletion analyses of the yeast U2 gene have confirmed that the highly conserved 5' domain is essential, although the adjacent approximately 950 nucleotides can be deleted without any phenotypic consequence. A 3'-terminal domain of approximately 100 nucleotides is also required for wild-type growth rates; the highly conserved terminal loop within this domain (loop IV) may provide specific binding contacts for two U2-specific snRNP proteins. We have replaced the single copy yeast U2 (yU2) gene with human U2 (hU2), expecting that weak or no complementation would provide an assay for cloning additional splicing factors, such as U2AF. We report here that hU2 can complement the yeast deletion with surprising efficiency. The interactions governing spliceosome assembly and intron recognition are thus more conserved than previously suspected. Paradoxically, the conserved loop IV sequence is dispensable in yeast.  相似文献   

19.
E F Pai  W Kabsch  U Krengel  K C Holmes  J John  A Wittinghofer 《Nature》1989,341(6239):209-214
The crystal structure of the guanine-nucleotide-binding domain of p21 (amino acids 1-166) complexed to the guanosine triphosphate analogue guanosine-5'-(beta, gamma-imido)triphosphate (GppNp) has been determined at a resolution of 2.6 A. The topological order of secondary structure elements is the same as that of the guanine-nucleotide-binding domain of bacterial elongation factor EF-Tu. Many interactions between nucleotide and protein have been identified. The effects of point mutations and the conservation of amino-acid sequence in the guanine-nucleotide-binding proteins are discussed.  相似文献   

20.
The assembly of ribosomes in bacterial cells is a complex process that remains poorly characterized. The in vitro assembly of active ribosomal subunits from purified RNA and protein components indicates that all of the information for proper assembly resides in the primary sequences of these macromolecules. On the other hand, the in vitro requirement of unphysiological heating steps suggests that this pathway may not accurately reflect the in vivo pathway, and that other proteins may be required. One approach to identify any additional proteins is to isolate second-site revertants of mutants defective in ribosome assembly. Ribosomal protein L24 is essential in the assembly of 50S subunits. We have identified an Escherichia coli gene, srmB, that, when expressed at high copy number, can suppress the effect of a temperature-sensitive lethal mutation in L24. The SrmB amino-acid sequence has sequence identity with mouse translation initiation factor eIF-4A and with the human nuclear protein, p68. The purified SrmB protein is a nucleic acid-dependent ATPase, like eIF-4A, but can also bind RNA in the absence of ATP and other auxiliary protein factors. The RNA dependent ATPase activity of SrmB suggests that like, eIF-4A, it could be involved in specific alterations of RNA secondary structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号