首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 93 毫秒
1.
利用简单的一步水热法制备高性能的镍掺杂SnO2 纳米微球锂离子电池负极材料. 利用扫描电镜(scanning electron microscope, SEM)、高分辨率透射电镜(high resolution transmission electron microscope, HRTEM)、拉曼分析仪、X射线衍射(X-ray diffraction, XRD)仪以及电化学性能测试仪器(如蓝电测试系统、电化学工作站)分别研究了镍掺杂对SnO2 微观形貌、组成、结晶行为及电化学性能的影响, 并得到了最佳反应时间. 实验结果表明:与纯SnO2相比, 镍掺杂SnO2 纳米微球表现出了更好的倍率性能和优异的循环性能. 特别地, 反应时间为12 h 的5 % 镍掺杂SnO2 在100 mA/g 电流密度下的首次放电比容量为1 970.3 mA·h/g,远高于SnO2 的理论容量782 mA·h/g. 这是因为镍掺杂可适应庞大的体积膨胀, 避免了纳米粒子的团聚, 因此其电化学性能得到了显著改善.  相似文献   

2.
为更好地研究石墨烯作为锂离子电池负极的性能,采用改进的Hummers方法,以天然鳞片石墨为原料,设计正交实验。通过改变插层剂的组成、氧化剂的比例、氧化反应时间、温度等反应参数来优化石墨烯的制备工艺,并通过XRD、FTIR、Raman和电池充放电测试等方法对产物的组成、结构和电化学性能进行表征。结果表明:石墨经氧化后形成了含有C=0、-COOH和C-O-C等官能团的石墨层间化合物;Raman光谱中rGO的积分强度比(ID/IC)比GO明显降低;在74.4mA/g约为0.1C的电流密度下进行电池充放电,rGO负极的首次放电容量为700mAh/g,30次循环电池放电性能稳定,可逆容量为350mAh/g。  相似文献   

3.
分别使用十二烷基苯磺酸钠(SDBS)作为表面活性剂以及十二烷基苯磺酸钠(SDBS)和聚乙烯吡咯烷酮(PVP)作为双表面活性剂,采用水解法制备出SnO_2纳米材料,并研究了SnO_2纳米材料的形貌和作为锂离子电池负极时的电化学性能之间的关系.结果表明,所制备的SnO_2纳米颗粒均为球形,大小为45~75 nm,在双表面活性剂的调控下所制备的SnO_2纳米材料体积较大.所制备的SnO_2纳米颗粒均为具有金红石结构的锡石型,属于四方晶系.恒电流充放电循环测试结果表明,SnO_2纳米颗粒具有较高的放电比容量,首次放电比容量大约为1400~1600 m Ah/g,但是循环稳定性较差,循环5次以后样品的放电比容量衰减至400~700 m Ah/g.总之,双表面活性剂调控下,7h煅烧制备得到的SnO_2纳米材料相对较好,具有相对较大的比容量和相对较小的阻抗.  相似文献   

4.
以SnCl2·2H2O、聚乙二醇400(PEG400)和Na3C6H5O7·2H2O为主要原料,采用简单的水热法制备了SnO2负极材料.采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)表征其组成和微观形貌,并采用恒流充放电测试、循环伏安法(CV)对样品进行电化学性能测试.结果表明:添加PEG400可以有效改善SnO2表面形貌,减少其团聚现象并且使其电化学性能明显提高.当添加量为10 mL时,合成的SnO2具有良好的循环及倍率性能,首次放电比容量为2 774 mAh/g,循环50次后放电比容量为600 mAh/g,电化学性能较改性前的SnO2有了明显改善.  相似文献   

5.
通过原位复合方法合成碳包覆MnO/石墨烯(C@MnO/GN)复合材料并探究其作为锂离子电池负极材料的电化学性能.扫描电子显微镜(SEM)以及透射电子显微镜(TEM)表征结果表明,MnO纳米颗粒(直径约为30~50nm)均匀分散在石墨烯片层上,且颗粒外面包裹一层厚度约为5nm的碳层.电化学测试结果表明该材料作为锂离子电池负极具有优异的倍率和循环性能.0.2和0.5A/g电流密度下,比容量分别为800和700mAh/g;10A/g电流密度下比容量仍能保持在372mAh/g;当电流密度调回0.5A/g时,其比容量仍能恢复到730mAh/g.该材料也表现出优异的循环性能,在5和10A/g电流密度下依次循环100圈,容量保持率几乎100%.  相似文献   

6.
在超声环境下,采用强氧化法将多壁碳纳米管(MWCNTs)切割成长径比小于5的超短碳纳米管(SSCNTs),通过简单的湿化学法将其与MnOx纳米颗粒(MnxNPs)植入还原性氧化石墨烯片层中,热处理后,形成GS-SSCNTs-MnNPs纳米复合材料.通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X-射线衍射(XRD)等制备材料的形貌结构,采用循环伏安和恒流充放电研究其锂离子电池负极性能.结果表明:GS-SSCNTs-MnNPs纳米复合材料在180 mA?g-1电流密度下具有高达1 100 mA?h?g-1的可逆容量,且表现出优异的功率和循环稳定性能,循环100圈之后,仍具有高达837 mA?h?g-1的可逆容量(1 440 mA?g-1).  相似文献   

7.
利用水热法合成了SnO2-si/c复合材料,利用X射线衍射(XRD)和扫描电子显微镜(SEM)分析了材料的物相和电极的微结构,结果表明,合成的复合材料中SnO2颗粒平均尺寸为5.3nm,碳的加入抑制了活性中心Si和SnO2在循环过程中较大的结构变化,且SnO2和Si颗粒均匀地分散在碳的网络结构中,增加了复合材料的电接触...  相似文献   

8.
以二水合钼酸钠(Na_2MoO_4·2H_2O)、四水合钼酸铵((NH_4)_6Mo_7O_(24)·4H_2O)作为钼源,硫脲(NH_2CSNH_2)为硫源,葡萄糖为碳源,采用水热法制备了二硫化钼(MoS_2)/C复合材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等分析方法对MoS_2/C复合材料的结构和形貌进行了表征,并对其电化学性能进行测试。结果表明:水热法合成的两种复合材料均为纳米片无序堆叠而成的蠕虫状结构,其中钼酸钠为钼源时呈微球状。将其用作负极材料时,钼酸钠作钼源性能更佳,其在电流密度为200 m A/g的情况下首次放电比容量为766 m Ah/g,库伦效率为78.3%,循环100次后容量保持在524 m Ah/g左右,其倍率性能优异。  相似文献   

9.
通过冻干-煅烧合成了一氧化锰/石墨烯(MnO/rGO)复合材料,并将其用作锂离子电池负极材料.在500 mA·g-1的电流密度下,MnO/rGO复合材料表现出高达830 mAh·g-1的可逆容量,且在充放电循环160圈后,其可逆容量依然高达805 mAh·g-1.倍率测试结果显示,循环225圈后,在2.0 A·g-1的电流密度下,其可逆容量高达412 mAh·g-1.复合材料中的石墨烯在提高材料导电性的同时有效地缓解了一氧化锰充放电过程中的体积膨胀.通过对比容量-电压的微分分析,发现复合材料超出一氧化锰理论容量的部分是由形成了更高价态的锰引起的.MnO/rGO复合材料比纯一氧化锰(p-MnO)更容易出现高价态的锰,可能是因为rGO上残留的氧为电极反应提供了额外所需的氧源.该一氧化锰/石墨烯复合材料因其简单绿色的合成过程及优异的电化学性质,有望在未来的锂电负极中得到广泛的实际应用.  相似文献   

10.
研究了炭化温度、升温速率以及碱处理浓度对稻壳制备锂离子电池负极材料结构及充放电性能的影响。通过差热热重分析曲线(DT-TGA)、元素分析、X射线粉末衍射(XRD)以及电化学性能测试手段对材料进行了表征。结果表明:在最佳实验条件下,材料首次充电容量为678mA.h/g,首次放电容量为239mA.h/g,循环10次的容量保持率为86.2%。  相似文献   

11.
采用溶胶-凝胶法合成前驱物Sn(OH)4胶体,在不同温度下加热分解,得到一系列纳米SnO2试样.通过恒流充放电和循环伏安(CV)实验,表征了不同结构和颗粒度的纳米SnO2锂二次电池负极材料的电化学性能.结果表明,纳米SnO2试样的电化学性能对热处理温度很敏感,800℃热分解试样的电化学性能较好.  相似文献   

12.
金属有机骨架化合物是一种由金属离子与有机配体通过配位键或共价键合成的新型的电极材料。然而,其低的电子导电率和严重的不可逆锂存储制约了该材料在锂电池领域的实际应用。石墨烯具有一系列独特属性,如高的导电率、高表面积、化学稳定性,机械强度和柔韧性,多孔结构。通常用来掺杂在电极材料中以提高循环性能和增加电池的容量。在本实验中,我们研究了Cu-MOF掺杂石墨烯(Cu-MOF/RGO)作为锂电负极材料的电化学性能。结果表明,在充放电电流密度为50 mA g-1时,充放电循环50次后,材料的放电比容量可达到520 mAh g-1。同时该材料也显示出较好的倍率性能和较高的库仑效率。由此可以看出Cu-MOF/RGO是一种具有前景的锂离子电池负极材料。  相似文献   

13.
1 Results Recently,Ryoo‘s group reported the preparation of ordered mesoporous carbon using highly ordered mesoporous silica[1-2]. Mesoporous and nanowire SnO2 anode materials for lithium batteries were prepared using KIT-6 and SBA-15 SiO2 templates. The as-prepared SnO2 nanowires had a diameter of 6 nm and a length of ≈3 μm and Brunauer-Emmett-Teller (BET) surface area of 80 m2/g while mesoporous SnO2 showed a pore size of 3.8 nm and a BET surface area of 160 m2/g. The charge capacities of these two an...  相似文献   

14.
锂离子二次电池铜锡合金负极研究进展   总被引:1,自引:0,他引:1  
与碳负极材料相比,锡基合金材料具有高容量、高密度的优势,有望成为新一代高容量锂离子电池的首选负极材料。Cu-Sn合金是研究最为广泛的锡基合金材料之一。综述了近年来该领域的研究进展,并对其发展方向进行了展望。  相似文献   

15.
综述锡基合金及其复合物负极材料的研究现状,概述了锂离子电池负极材料的开发历程及其发展趋势,介绍了各种锡基合金的结构、电化学性能及其主要制备方法,分析了各类锡基合金的优势及存在的问题,最后指出纳米合金复合物与三维纳米多孔集流体的组合是当前合金负极实际应用的发展方向。  相似文献   

16.
铁氧化物锂离子电池负极材料具有比容量高、资源丰富、价格便宜和环境友好等优势,是目前高容量负极材料的研究热点之一.然而,铁氧化物负极材料巨大的体积效应、较差的循环性能以及大的首次可逆容量损失,影响了其在锂离子电池中的应用.目前研究最多的铁氧化物负极材料是α-Fe2O3和Fe3O4,理论容量分别为1007 mA·h·g-1和924 mA·h·g-1.关于其电化学性能的改进方法,包括制备不同形貌与尺寸的纳米结构材料以及铁氧化物/碳纳米复合材料.介绍了铁氧化物锂离子电池负极材料的储锂机理及其存在的问题,综述了各类铁氧化物负极材料的制备方法、影响因素及电化学性能,并对铁氧化物负极材料的进一步研究、发展应用予以展望.  相似文献   

17.
CuO掺杂纳米SnO2锂离子电池负极材料的合成与电化学性能   总被引:1,自引:0,他引:1  
以SnCl4·5H2O、Cu(NO3)2·3H2O和NH3·H2O为原料,采用化学共沉淀法制备了CuO掺杂的纳米SnO2粉末.运用X射线衍射、扫描电镜等手段对合成粉末进行了表征.将合成粉末作为锂离子电池负极材料,研究了其充放电容量、循环性能和交流阻抗等电化学性能.结果表明:采用化学共沉淀法可以得到平均粒度为87 nm的CuO掺杂的纳米SnO2粉末;在SnO2中掺入CuO,并没有改变SnO2的结构,但能够有效抑制SnO2粒子的长大;CuO掺杂的纳米SnO2粉末的可逆容量可以达到752 mA·g-1,经60次循环后,CuO掺杂的纳米SnO2粉末的容量保持率分别为93.6%,优于纳米SnO2 (92.0%),掺杂CuO改善了纳米SnO2的循环性能.  相似文献   

18.
锂离子电池纳米负极材料的研究和开发   总被引:1,自引:0,他引:1  
综述了纳米材料在负极材料方面的最新研究和开发进展,主要包括纳米金属及纳米合金、纳米氧化物、碳纳米管、具有纳米孔结构的无定形炭材料和天然石墨.由于纳米材料的特有性能,它们的可逆容量均高于目前商品化的负极材料.纳米合金负极材料的实业化存在问题,特别是循环稳定性.碳纳米管则由于制备和纯化,成本过高,规模化生产不容易实施,同时理论方面也有待于进一步的研究,以期提高其电化学性能.具有纳米孔的无定形炭材料的制备温度低,而且容量也比较高,但是对于产业化而言,循环性能和电压滞后现象有待于改进.具有纳米孔的天然石墨负极材料不仅容量高、制备比较简单、成本低,而且具有良好的循环性能,可望达到产业化的要求.  相似文献   

19.
介绍了水系锂离子电池的结构、原理、特点、发展现状,以及负极材料磷酸钛锂的特点,综述了磷酸钛锂性能提升改性方法,包括特殊结构改性、晶格掺杂、引入高效导电剂等磷酸钛锂的研究进展阐释了和发展前景.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号