共查询到17条相似文献,搜索用时 94 毫秒
1.
为了分析突发事件期间网络舆论的情感倾向,以更有效地调节人们的情绪,维护社会稳定。本文提出了一种融合BERT模型和多通道卷积神经网络的深度学习方法用于细粒度情感分类,以获取更加丰富的文本语义特征信息。通过BERT 对输入的文本进行编码,以增强文本的语义特征表示,再通过具有多个不同大小的卷积核的并行卷积层来学习文本特征,捕获文本的深层次特征,提升模型在文本分类的性能。对比实验表明,该模型在准确性、召回率和F1值方面均优于传统的情感分类模型,并能显著改善细粒度情感分类的性能。除此之外,本文还探究了表情符号对细粒度情感分类模型的影响,实验结果表明表情符号转换成文字后可以增强文本的情感特征提取能力,提升模型分类性能。 相似文献
2.
微博的流行使公众能够更加容易也更加积极地参与到社会话题的讨论中去,识别公众对事件的情感倾向已经成为一个有价值的话题.目前已有的情感分类方法往往是选择一种分类模型(比如SVM)或者结合几种分类模型,然后将数据直接进行分类,没有考虑根据数据的不同领域来调整分类模型.基于预训练的BERT网络,可以使用无标签的时政微博语料改进... 相似文献
3.
针对细粒度图像分类中数据分布具有小型、非均匀和不易察觉类间差异的特征,提出一种基于注意力机制的细粒度图像分类模型.首先通过引入双路通道注意力与残差网络融合对图像进行初步特征提取,然后应用多头自注意力机制,达到提取深度特征数据之间细粒度关系的目的,再结合交叉熵损失和中心损失设计损失函数度量模型的训练.实验结果表明,该模型在两个标准数据集102 Category Flower和CUB200-2011上的测试准确率分别达94.42%和89.43%,与其他主流分类模型相比分类效果更好. 相似文献
4.
针对传统法条推荐方法知识利用不足的问题,结合预训练BERT模型,提出了一种基于司法领域法律条文知识驱动的法条推荐方法。首先基于BERT预训练模型对法条知识和案件描述分别进行表征,并基于双向LSTM对案件描述文本进行特征提取,然后基于注意力机制提取融合法条知识的案件描述文本特征,最终实现法条智能推荐。该方法在法研杯公共数据集上,法条推荐F1值达到0.88,结果表明,融合法条知识的BERT模型对法条推荐具有显著提升作用,并且可以有效地解决易混淆法条推荐问题。 相似文献
5.
针对现有的第Ⅰ类HLA(HLA-Ⅰ)分子与多肽结合亲和力预测算法在特征构造时依赖传统序列评分函数的问题,为突破用经典机器学习算法构造氨基酸序列特征的局限性,提出一种基于蛋白质预训练模型ProtBert的HLA-Ⅰ与多肽的结合预测算法ProHLAⅠ.该算法利用生命体语言与文本语言在组成上的共性,将氨基酸序列类比句子,通过整合ProtBert预训练模型、 BiLSTM编码和注意力机制的网络结构优势,对HLA-Ⅰ序列和多肽序列进行特征提取,从而实现HLA-Ⅰ独立于位点的多肽结合预测.实验结果表明,该模型在两组独立测试集中均取得了最优性能. 相似文献
6.
针对关系分类主流模型中存在的空间信息丢失和旋转不变性差的缺点,提出一个基于BERT和多头注意机制-胶囊网络(MA-CapsNet)的算法模型.该模型首先在句子的实体两端插入特殊符号,增强模型对实体信息的表示能力,再通过预训练的BERT语言模型获得包含上下文信息的语义向量表示,然后传入改进后的注重空间位置信息的胶囊网络中学习句子的语义特征并分类.同时引入多头注意力机制进一步提升模型的分类效果.在SemEval-2010 task 8关系分类数据集上,该算法模型取得了90.15%的宏F值.实验表明该模型架构能强化对句子语义特征的捕捉,改善关系分类任务的分类效果. 相似文献
7.
针对包含细微差异动作的视频数据集,提出了一种用于分辨细粒度差异动作的深度神经网络.该网络结构由一个三维卷积(C3D)网络的轻量化变体和一个基于注意力机制的长短时记忆网络组成,优化了三维卷积网络的深度和注意力机制的权重惩罚项.实验结果表明:该网络可以有效地关注视频中的重要信息,在平均准确率和检测准确率上均有所提升. 相似文献
8.
针对双向长短时记忆网络-条件随机场(bi-directional long short-term memory-conditional random field,BiLSTM-CRF)模型存在准确率低和向量无法表示上下文的问题,提出一种改进的中文命名实体识别模型。利用裁剪的双向编码器表征模型(bidirectional encoder representations from transformers,BERT)得到包含上下文信息的语义向量;输入双向门控循环单元(bidirectional gated recurrent unit,BiGRU)网络及多头自注意力层捕获序列的全局和局部特征;通过条件随机场(conditional random field,CRF)层进行序列解码标注,提取出命名实体。在人民日报和微软亚洲研究院(Microsoft research Asia,MSRA)数据集上的实验结果表明,改进模型在识别效果和速度方面都有一定提高;对BERT模型内在机理的分析表明,BERT模型主要依赖从低层和中层学习到的短语及语法信息完成命名实体识别(named entity recognition,NER)任务。 相似文献
9.
针对传统关系抽取模型依赖特征工程等机器学习方法, 存在准确率较低且规则较繁琐等问题, 提出一种BERT+BiLSTM+CRF方法. 首先使用BERT(bidirectional encoder representations from transformers)对语料进行预训练; 然后利用BERT根据上下文特征动态生成词向量的特点, 将生成的词向量通过双向长短期记忆网络(BiLSTM)编码; 最后输入到条件随机场(CRF)层完成对因果关系的抽取. 实验结果表明, 该模型在SemEval-CE数据集上准确率比BiLSTM+CRF+self-ATT模型提高了0.054 1, 从而提高了深度学习方法在因果关系抽取任务中的性能. 相似文献
10.
11.
针对BERT模型领域适应能力较差,无法解决训练数据类别数量不均衡和分类难易不均衡等问题,提出一种基于WBBI模型的服务文本分类方法。首先通过TF-IDF算法提取领域语料中的词汇扩展BERT词表,提升了BERT模型的领域适应性;其次,通过建立的BERT-BiLSTM模型实现服务文本分类;最后,针对数据集的类别数量不均衡和分类难易不均衡问题,在传统焦点损失函数的基础上提出了一种可以根据样本不均衡性特点动态调整的变焦损失函数。为了验证WBBI模型的性能,在互联网获取的真实数据集上进行了大量对比试验,实验结果表明:WBBI模型与通用文本分类模型TextCNN、BiLSTM-attention、RCNN、Transformer相比Macro-F1值分别提高了4.29%、6.59%、5.3%和43%;与基于BERT的文本分类模型BERT-CNN、BERT-DPCNN相比,WBBI模型具有更快的收敛速度和更好的分类效果。 相似文献
12.
对上海中小学教材德目教育文本分类进行研究,提出了基于转换器的双向编码表征(BERT)预训练模型、双向长短期记忆(BiLSTM)网络和注意力机制的模型IoMET_BBA. 通过合成少数类过采样技术(SMOTE)与探索性数据分析(EDA)技术进行数据增强,使用BERT模型生成富含语境信息的语义向量,通过BiLSTM提取特征,并结合注意力机制来获得词语权重信息,通过全连接层进行分类. 对比实验的结果表明,IoMET_BBA的F1度量值达到了86.14%,优于其他模型,可以精确地评估教材德目教育文本. 相似文献
13.
针对数控机床(computer numerical control,CNC)故障领域命名实体识别方法中存在实体规范不足及有效实体识别模型缺乏等问题,制定了领域内实体标注策略,提出了一种基于双向转换编码器(bidirectional encoder representations from transformers,BERT)的数控机床故障领域命名实体识别方法。采用BERT编码层预训练,将生成向量输入到双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)交互层以提取上下文特征,最终通过条件随机域(conditional random field,CRF)推理层输出预测标签。实验结果表明,BERT-BiLSTM-CRF模型在数控机床故障领域更具优势,与现有模型相比,F1值提升大于1.85%。 相似文献
14.
基于深层特征抽取的日文词义消歧系统 总被引:1,自引:0,他引:1
词义消歧的特征来源于上下文.日文兼有中英文的语言特性,特征抽取更为复杂.针对日文特点,在词义消歧逻辑模型基础上,利用最大熵模型优良的信息融合性能,采用深层特征抽取方法,引入语义、句法类特征用于消解歧义.同时,为避免偏斜指派,采用BeamSearch算法进行词义序列标注.实验结果表明,与仅使用表层词法类特征方法相比,本文构造的日文词义消歧系统的消歧精度提高2%~3%,动词消歧精度获得5%的改善. 相似文献
15.
针对传统用户意图识别主要使用基于模板匹配或人工特征集合方法导致成本高、扩展性低的问题,提出了一种基于BERT词向量和BiGRU-Attention的混合神经网络意图识别模型。首先使用BERT预训练的词向量作为输入,通过BiGRU对问句进行特征提取,再引入Attention机制提取对句子含义有重要影响力的词的信息以及分配相应的权重,获得融合了词级权重的句子向量,并输入到softmax分类器,实现意图分类。爬取语料实验结果表明,BERT-BiGRU-Attention方法性能均优于传统的模板匹配、SVM和目前效果较好的CNN-LSTM深度学习组合模型。提出的新方法能有效提升意图识别模型的性能,提高在线健康信息服务质量、为在线健康社区问答系统提供技术支撑。 相似文献
16.
提出一种基于分块离散余弦变换(DCT)和线性鉴别分析的人脸特征提取方法。该算法对人脸图像进行DCT变换,根据图像块位置和能量分布选择不同的DCT高低频分量构建特征向量,再线性鉴别变换降低特征维数,提高特征的鉴别能力,并利用分类器进行特征的分类与识别。人脸库上的仿真结果验证了该方法的有效性。 相似文献
17.
意见目标抽取是自然语言处理领域中意见挖掘研究的重要环节。该文提出了一种基于泛化、繁殖和自举的意见目标抽取方法,在泛化过程中提炼原子意见目标和意见目标模式,在繁殖过程中对复合意见目标进行扩展,并采取自举机制实现了意见目标的递增学习。实验结果显示,经过第一轮自举过程后,该方法的F-1 score指标超出基线方法0.078;自举过程完成后,F-1 score指标提高了0.112。这说明,泛化处理对意见目标充分繁殖意义重大,自举过程则有助于充分发挥泛化能力和繁殖能力。 相似文献