首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new approach for the isolation of chromosome-specific subsets from a human genomic yeast artificial chromosome (YAC) library is described. It is based on the hybridization with an Alu polymerase chain reaction (PCR) probe. We screened a 1.5 genome equivalent YAC library of megabase insert size with Alu PCR products amplified from hybrid cell lines containing human chromosome 21, and identified a subset of 63 clones representative of this chromosome. The majority of clones were assigned to chromosome 21 by the presence of specific STSs and in situ hybridization. Twenty-nine of 36 STSs that we tested were detected in the subset, and a contig spanning 20 centimorgans in the genetic map and containing 8 STSs in 4 YACs was identified. The proposed approach can greatly speed efforts to construct physical maps of the human genome.  相似文献   

2.
The Huntington's disease (HD) gene has been localized by recombination events to a region covering 2.2 megabases (Mb) DNA within chromosome 4p16.3. We have screened three yeast artificial chromosome (YAC) libraries in order to isolate and characterize 44 YAC clones mapping to this region. Approximately 50% of the YACs were chimaeric. Unstable YACs were identified across the whole region, but were particularly prevalent around the D4S183 and D4S43 loci. The YACs have been assembled into a contig extending from D4S126 to D4S98 covering roughly 2 Mb DNA, except for a gap of about 250 kilobases (kb). The establishment of a YAC contig which spans the region most likely to contain the HD mutation is an essential step in the isolation of the HD gene.  相似文献   

3.
Engineering a mouse balancer chromosome.   总被引:15,自引:0,他引:15  
Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.  相似文献   

4.
The identification of genes that control susceptibility to testicular germ-cell tumours (TGCTs), the most common cancer affecting young men, has been difficult. In laboratory mice, TGCTs arise from primordial germ cells in only the 129 inbred strains, and susceptibility is under multigenic control. The spontaneously arising mutation Ter (ref. 5) on mouse chromosome 18 (Refs 6,7) increases TGCT frequency on a 129/Sv background. We originally used Ter in genetic crosses to identify loci that control tumorigenesis. A genome scan of tumour-bearing progeny from backcrosses between the 129/Sv-Ter/+ and MOLF/Ei strains provided modest evidence that MOLF-derived alleles on chromosome 19 enhance development of bilateral TGCTs (ref. 9). To obtain independent evidence for linkage to the MOLF chromosome, we made an autosomal chromosome substitution strain (CSS; or 'consomic strain') in which chromosome 19 of 129/Sv+/+ was replaced by its MOLF-derived homologue. The unusually high frequency of TGCTs in this CSS (even in the absence of the Ter mutation) provides evidence confirming the genome survey results, identifies linkage for a naturally occurring strain variant allele that confers susceptibility to TGCTs and illustrates the power of CSSs in complex trait analysis.  相似文献   

5.
The genome of the fission yeast, Schizosaccharomyces pombe, consists of some 14 million base pairs of DNA contained in three chromosomes. On account of its excellent genetics we used it as a test system for a strategy designed to map mammalian chromosomes and genomes. Data obtained from hybridization fingerprinting established an ordered library of 1,248 yeast artificial chromosome clones with an average size of 535 kilobases. The clones fall into three contigs completely representing the three chromosomes of the organism. This work provides a high resolution physical and clone map of the genome, which has been related to available genetic and physical map information.  相似文献   

6.
7.
8.
Novel approaches to the structural and functional analysis of mammalian chromosomes would be possible if the gross structure of the chromosomes in living cells could be engineered. Controlled modifications can be engineered by conventional targeting techniques based on homologous recombination. Large but uncontrolled modifications can be made by the integration of cloned human telomeric DNA. We describe here the combined use of gene targeting and telomere-mediated chromosome breakage to generate a defined truncation of a human chromosome. Telomeric DNA was targeted to the 6-16 gene on the short arm of chromosome 1 in a human cell line. Molecular and cytogenetic analyses showed that, of eight targeted clones that were isolated, one clone had the predicted truncation of chromosome 1.  相似文献   

9.
Developmental dyslexia is defined as a specific and significant impairment in reading ability that cannot be explained by deficits in intelligence, learning opportunity, motivation or sensory acuity. It is one of the most frequently diagnosed disorders in childhood, representing a major educational and social problem. It is well established that dyslexia is a significantly heritable trait with a neurobiological basis. The etiological mechanisms remain elusive, however, despite being the focus of intensive multidisciplinary research. All attempts to map quantitative-trait loci (QTLs) influencing dyslexia susceptibility have targeted specific chromosomal regions, so that inferences regarding genetic etiology have been made on the basis of very limited information. Here we present the first two complete QTL-based genome-wide scans for this trait, in large samples of families from the United Kingdom and United States. Using single-point analysis, linkage to marker D18S53 was independently identified as being one of the most significant results of the genome in each scan (P< or =0.0004 for single word-reading ability in each family sample). Multipoint analysis gave increased evidence of 18p11.2 linkage for single-word reading, yielding top empirical P values of 0.00001 (UK) and 0.0004 (US). Measures related to phonological and orthographic processing also showed linkage at this locus. We replicated linkage to 18p11.2 in a third independent sample of families (from the UK), in which the strongest evidence came from a phoneme-awareness measure (most significant P value=0.00004). A combined analysis of all UK families confirmed that this newly discovered 18p QTL is probably a general risk factor for dyslexia, influencing several reading-related processes. This is the first report of QTL-based genome-wide scanning for a human cognitive trait.  相似文献   

10.
High-density lipoproteins (HDLs) are anti-atherogenic lipoproteins that have a major role in transporting cholesterol from peripheral tissues to the liver, where it is removed. Epidemiologic studies have shown that low levels of high-density lipoprotein-cholesterol (HDL-C) are associated with an increased incidence of coronary heart disease and an increased mortality rate, indicating a protective role of high concentrations of HDL-C against atherogenesis and the development of coronary heart disease. HDL-C level is influenced by several genetic and nongenetic factors. Nongenetic factors include smoking, which has been shown to decrease the HDL-C level. Exercise and alcohol have been shown to increase HDL-C levels. Decreased HDL-C is often associated with other coronary heart disease risk factors such as obesity, hyperinsulinemia and insulin resistance, hypertriglyceridemia and hypertension. Although several genes have been identified for rare forms of dyslipidemia, the genes accounting for major variation in HDL-C levels have yet to be identified. Using a multipoint variance components linkage approach, we found strong evidence of linkage (lod score=3.4; P=0.00004) of a quantitative trait locus (QTL) for HDL-C level to a genetic location between markers D9S925 and D9S741 on chromosome 9p in Mexican Americans. A replication study in an independent set of Mexican American families confirmed the existence of a QTL on chromosome 9p.  相似文献   

11.
Light is a dominant mutant allele of the mouse brown locus which results in hairs pigmented only at their tips. The phenotype is due to premature melanocyte death. We have sequenced the tyrosinase-related protein-1 cDNA encoded at this locus from Light mice and found that it contains a single base alteration from wild-type, causing an Arg to Cys change in the protein. To further elucidate the mutant phenotype, we studied the expression of melanocyte specific genes in the skin of Light mice. We have demonstrated premature melanocyte death, but only in pigmented mice, indicating that the cell death is mediated through the inherent cytotoxicity of pigment production.  相似文献   

12.
13.
We have developed technologies that simplify genomic library construction and screening, substantially reducing both the time and the cost associated with traditional library screening methods and facilitating the generation of gene-targeting constructs. By taking advantage of homologous recombination in Escherichia coli, we were able to use as little as 80 bp of total sequence homology to screen for a specific gene from a genomic library in plasmid or phage form. This method, called recombination cloning (REC), takes only a few days instead of the several weeks required for traditional plaque-lift methods. In addition, because every clone in the mouse genomic library we have constructed has a negative selection marker adjacent to the genomic insert, REC screening can generate gene-targeting vectors in one step, from library screening to finished construct. Conditional targeting constructs can be generated easily with minimal additional manipulation.  相似文献   

14.
We previously identified Nob1 as a quantitative trait locus for high-fat diet-induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab-GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly expressed in skeletal muscle. Knockdown of TBC1D1 in skeletal muscle cells increased fatty acid uptake and oxidation, whereas overexpression of TBC1D1 had the opposite effect. Recombinant congenic mice lacking TBC1D1 showed reduced body weight, decreased respiratory quotient, increased fatty acid oxidation and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet-induced obesity by increasing lipid use in skeletal muscle.  相似文献   

15.
Familial Alzheimer's disease (FAD) has been shown to be genetically heterogeneous, with a very small proportion of early onset pedigrees being associated with mutations in the amyloid precursor protein (APP) gene on chromosome 21, and some late onset pedigrees showing associations with markers on chromosome 19. We now provide evidence for a major early onset FAD locus on the long arm of chromosome 14 near the markers D14S43 and D14S53 (multipoint lod score z = 23.4) and suggest that the inheritance of FAD may be more complex than had initially been suspected.  相似文献   

16.
Genetic linkage studies with chromosome 21 DNA markers and mutation analysis of the beta-amyloid protein precursor gene located in 21q21.3 have indicated that early-onset Alzheimer's disease (EOAD) is a heterogeneous disorder for which at least one other chromosomal locus exists. We examined two extended histopathologically confirmed EOAD pedigrees, AD/A and AD/B, with highly informative short tandem repeat (STR) polymorphisms and found complete linkage of the disease to a (CA)n dinucleotide repeat polymorphism at locus D14S43 in 14q24.3 (Zmax = 13.25 at theta = 0.0). Using additional chromosome 14 STR polymorphisms we were able to delineate the region containing the EOAD gene to an area of, at most, 8.9 centiMorgans between D14S42 and D14S53, flanking D14S43 on both sides.  相似文献   

17.
18.
19.
Telomere-associated chromosome fragmentation (TACF) is a new approach for chromosome mapping based on the non-targeted introduction of cloned telomeres into mammalian cells. TACF has been used to generate a panel of somatic cell hybrids with nested terminal deletions of the long arm of the human X chromosome, extending from Xq26 to the centromere. This panel has been characterized using a series of X chromosome loci. Recovery of the end clones by plasmid rescue produces a telomeric marker for each cell line and partial sequencing will allow the generation of sequence tagged sites (STSs). TACF provides a powerful and widely applicable method for genome analysis, a general way of manipulating mammalian chromosomes and a first step towards constructing artificial mammalian chromosomes.  相似文献   

20.
Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease.   总被引:15,自引:0,他引:15  
Somatic inactivation of PTEN occurs in different human tumors including glioblastoma, endometrial carcinoma and prostate carcinoma. Germline mutations in PTEN result in a range of phenotypic abnormalities that occur with variable penetrance, including neurological features such as macrocephaly, seizures, ataxia and Lhermitte-Duclos disease (also described as dysplastic gangliocytoma of the cerebellum). Homozygous deletion of Pten causes embryonic lethality in mice. To investigate function in the brain, we used Cre-loxP technology to selectively inactivate Pten in specific mouse neuronal populations. Loss of Pten resulted in progressive macrocephaly and seizures. Neurons lacking Pten expressed high levels of phosphorylated Akt and showed a progressive increase in soma size without evidence of abnormal proliferation. Cerebellar abnormalities closely resembled the histopathology of human Lhermitte-Duclos disease. These results indicate that Pten regulates neuronal size in vivo in a cell-autonomous manner and provide new insights into the etiology of Lhermitte-Duclos disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号