首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文讨论了条件L泛函 θ(χ)=integral from n=0 to 1 F~(-1)(y|χ)J(y)dy sum from j=1 to m a_jF~(-1)(p_j|χ)的随机加权逼近的渐近性。  相似文献   

2.
设 A=(a_(ij))是 n 阶对角占优矩阵,即若记 N={1,2,…,n},则对任意 i∈N 都有|a_n|≥sum from j=1 j≠i to n |a_(ij)|.本文所涉及的矩阵总假定是对角占优的。记 J(A)={i∈N||a_(ii)|>sum from j=1 j≠i to n |a_(ij)|}.当 J(A)=N 时,A 为严格对角占优矩阵,当 J(A)≠Φ,且 A 不可约时,A 是不可约对角占优矩阵,这两种矩阵都是非奇异的。当 J(A)≠Φ,A 为可约矩阵时,一九七四年 P.N.shivakumar 和 kim Ho Chew 给出了它为非奇异的一个充分条件:定理.设 A 为可约矩阵,J(A)≠Φ,若对每个 (?)J(A),都存在由 A 中非零元素构成的序列(也叫非零元素链):a_(ii_1),a_(i_1i_2),…,a_(i_(s-1))i_s,i_s∈J(A),那末 A 是非奇异的.P.N Shivakumar 和 kim Ho Chew 在证明此定理时,引用了 M—矩阵的性质,篇幅  相似文献   

3.
本文考虑一类广义Jrgens型非线性双曲方程u_ sum from |α||β|=m(-1)~|α|D~α(a_(αβ(x))×D~βu)=f(u)的初边值问题,并用Galerkin方法,证明了整体广义解的存在唯一性.  相似文献   

4.
复的幂级数sum from n=0 to ∞(C_n(z-a)~n)在收敛圆k:|z-a|<R(0<R≤+∞)内的和函数f(z)具n=0有一些很好的性质,如:①,f(z)在k内解析;②,f(z)在k内具有任意阶导数,且可逐项求导至任意阶,即:f_(Z)~(m)=sum from n=m to ∞(n(n-1))……(n-m+1)·C_n(z-a)~(n-m),(z∈k,m∈N)等。但其和函数在收敛圆周|z-a|=R(0相似文献   

5.
§1.设k次对称函数fk(x)=z sum from v=1 to ∝(a_(vk)_1)~(z~(vk_1))=z sum from v=z to ∝ (a_n~(k)z~(vk 1)在单位圆|z|<1中正则单叶,这类函数的全体称为S_k,设σ_n~(k)=z sum from v=1 to ∝n (a_(vk)_1~(z~(vk 1))。 舍苟证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数,伊列夫证明当  相似文献   

6.
给定域F上的n阶方阵A=(a_(ij)),A的行列式的通常定义是定义1 |A|=sum from σ(sgnσ)a_(1,j1)a_(2,j2)…a_(n,jn) (1) 这里sum from σ是对所有n阶排列σ=j_1 j_2…j_n求和,符号 sgnσ={1,当σ为偶排列时,-1,当σ为奇排列时。 由(1)可推出许多众所周知的行列式性质,我们能否从中筛选出最本质的几条,来建立行列式的理论?这实际上是涉及行列式定义的公理化问题。在教学中提出并解决这个问题,对培养学生的数学素质、开拓智力是有作用的。  相似文献   

7.
§1.设k次对称函数f_k(z)=z+sum from v=1 to∝ (avk+1) z~(vk+1)在单位圆|z|<1中正则单叶,这类函数的全对称为S_k,记σ_n~(k)=z+sum from v=1 ton(avk+1)z~(vk+1)。 舍荀证明一切σ_n~(1)(z)在圆|z|<1/4中单叶,且不能易以更大的数.伊列夫证明当n≥15时,σ_n~(1)在圆|z|<1-4(lnn/n)中单叶.  相似文献   

8.
本文主要结果为鞅差序列{X_i,J_i,i≥1}服从强大数律的充分条件为(1) sum from i=1 to ∞(E[|X_i|~p/a~p_i+|X_i|~p|J_(i-1)]<∞,0相似文献   

9.
证明在高温时,氢分子的 z_(仲)=z_(正)氢气中包含仲氢和正氢,它们的配分函数Z_(仲)和Z_(正)分别为 z_(仲)=sum from J=0.2.4…to∞(2J+1)e~(-J(J+1)θ_r/T) ……(1) z_(正)=sum from J=1.3.5…to∞(2J+1)e~(-J(J+1)θ_r/T) ……(2)  相似文献   

10.
设Ω是R~m(m≥2)中一个有界区域,考虑多调和算子组的特征值问题AΛ(△)u~T=λu~T,x∈Ωu~k=(?)u~k/(?)n=…=(?)~(k-1)u~k/(?)n~(k-1)=0,x∈(?)Ω,k=1,2,…,N其中,u=(u~1,u~2,…,u~N),n是(?)Ω的单位外法向量。将特征值按增加的顺序排列为0<λ_1≤λ_2≤…≤λ_n≤…则成立如下不等式λ_(n 1)≤λ_n 4/m~2n~2(sum from i=1 to n sum from h=1 to N λ_i~(1/k))(sum from i=1 to n sum from k=1 to N k(2k m-2)λ_i~(1-1/k)) sum from i=1 to n sum from k=1 to N λ_i~(1/k)/λ_(n 1)-λ_i≥m~2n~2/(sum from i=1 to n sum from k=1 to N 4k(2k m-2)λ_i~(1-1/k))  相似文献   

11.
§1.设f(z)在圆|z|<1中正则,且当|z|<1时|f(z)|≤1,那么f(z)叫B类函数。设f(z)在单位圆上正则,ω~k=1,则f(z)=sum from i=1 to k f_i(z),f_i(z)满足f_i(ωz)=ω~if_i(z)。本文利用的方法对这些f_i(z)加以估计。§2.为了作下面的估计,先考虑两个预备定理:预备定理1.设m为非负的整数,r_n(n=m,m+1,…,r_m≠0)是一列复数,sum from n=m to ∝|r_n|<∞。那么  相似文献   

12.
1.引言设S={f(z)=z+sum from n=2 to ∞a_■z~n.;f在D:|z|<1内解析、单叶}1916年Bieberbach提出猜想:若f∈S,则(1.1)|a.|≤n,n=2,3,…,最近,Louis de Branges证明了下面的重要结果,它蕴含着Bieberbach猜想。De Branges定理,若f∈S,且(1.2)log (f(z))/z=sum from k=1 to ∞c_(?)z~k,(z∈D)则,对于n=1,2,…,有(1.3)sum from k=1 to n k(n+1-k)|Ck|~2≤4 sum from k=1 to n (n+1-k)/k. 这个不等式实际上是1971年Milin的猜想[7](例如可参阅[4,P.155])  相似文献   

13.
本文目的在于解决陈翰麟所提出的一个问题,即证明典型实照函数f(z)==z+sum from n=2 to ∞a_nz~n的所有开始多项式S_n(z)=z+a_2z~2+…+a_nz~n(n≥2)在|z|<1/4内是星象函数,且结果是最好可能的,半径1/4不能用更大的数代替。  相似文献   

14.
本文研究了线性函数方程 f(x)=sum from n=1 to l a_if(a_ix) h(x) 以及齐次函数方程 f(x)=sum from i=1 to l a_if(a_ix) 解的渐近性质,其中|a_1|<1,i=1、2,…,l。  相似文献   

15.
设ζ_1ζ_n(n≥1)是i.i.d.实值随机变量,a_1,…,a_m是一组实数。定义X_a=sum from i=1 to (?) (a_iζ_i+a,(?)=1/n sum from i=1 to n (X_a)。)本文证明:若Eexp(tζ)<∞(A|t|<η),则服从大偏差原理。  相似文献   

16.
设b_i≥0,sum from 0 to ∞(b_i)=∞,而sum from 0 to ∞(b_ix_i)于|x|<|收敛;则由=1可以推断:sum from 0 to (a_ix~i)于|x|<|收敛,并且(1)这一人所共知的事实是古典Frobenius定理的推广.(1954)曾对Frobenius定理作了若干扩充.在这篇文章里,作者将直接就(1)式加以某些改进;从而把的工作作为特例包括在本文的结果中.本文主要结果的证明基于下面三个引理,其中引理3是最基本的.  相似文献   

17.
本文研究线性抛物型时滞微分方程组(δU_i)/(δt)+∑sum from j=1 to m P_(ij)(x,t)U_i(x,t-τ(t))=a_i(t)ΔU_i+∑sum from j=1 to m_1 a_(ij)(t)ΔU_i(x,t-δ_j),i=1,2,…,m (1)解的振动性,其中(x,t)∈Ω×(0,∞),ΩR~n 是具有逐片光滑的边界的有界区域,U_i=U_i(x,t),ΔU_i=∑sum from j=1 to n (δ~2U_i(x,t))/(δ)x_j~2),获得了方程组(1)的所有解振动的充分条件,同时给出了应用这些充分条件的例子。  相似文献   

18.
函数空间的逼近理论由于在近似方法中的应用而被人们所重视。Di Guglielmo,F.在[1]中研究了空间 W~(m,p)(R~n)(p≥2)的多项式逼近问题。空间 W~(m,p)(Ω)是指具有如下性质的函数 u 组成的集合:W~(m,p)(Ω)≡{u∈L~p(Ω):D~αu∈L~p(Ω),0≤|α|≤m,其中 D~αu 是意义下的广义(或广义函数意义下的)偏导数},其中α={α_1,…,α_n}是非负整数α_j 的一个 n 重组,|α|=sum from j=1 to n α_j,D_j=(?)/((?)x)(对于1≤j≤n),D~α=D_1~(α_1)…D_n~(α_n).Ω为有界或无界区域。范数为‖u‖_m~p,p=sum from 0≤|α|≤m ‖D~αu‖_p~p, 1相似文献   

19.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

20.
一、导言 设f(z)=z sum from n=2 az~n在|z|<1内解析且f(z)f′(z)≠0(0<|z|<1),若对于实数β∈[0,1]、λ∈(-π/2、π/2)以及α∈(-∝, ∝)有  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号