首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyethyleneimine (PEI) and cationic liposomes were widely used for gent delivery and the combination of PEI and liposome was reported to result in a higher efficiency of cell transfection in vitro. In recent years, better transfection was observed for the drug-loaded iiposome fixed on the tissue engineering scaffolds via embedding, surface adsorption or covalent grafting thus protected and bound by the scaffolds. In the present study, a novel PEI-liposome loaded fish gdatin composite nanofiber was successfully fabricated by a green electrosplnning process. The existence of PEI- liposome in the composite nanofibers was determined by Fourier transform infrared ( FTIR ) spectra, transmission electron microscopy (TEM), and confoeal laser scanning microscopy (CLSM). As shown by scanning electron microscopy (SEM), the dectrospun composite nanofibers with uniform diameter were smooth and round, and the morphology of the fish gelatin fibers did not change significantly after the incorporation of PEI-liposomes. The transfection results in vitro suggest PEI-liposome loaded fish gelatin material may have a promising application in non-viral gene delivery systems.  相似文献   

2.
为了探究基于低分子量聚乙烯亚胺(polyethylenimine, PEI)基因载体的转染效率,通过Michael加成反应将PEI 600 Da接枝于含有疏水链的生物可降解聚酯上形成系列梳状聚合物,并将之应用于基因载体;利用核磁氢谱和凝胶渗透色谱对聚合物的化学结构与分子量进行了测定,此外,还利用凝胶电泳实验和绿色荧光蛋白实验研究了聚合物与DNA的结合能力及其复合物的转染性能。结果表明:本文方法成功合成了系列低聚物,并对DNA表现出较好的包裹能力;油酸修饰后的低聚物与DNA复合物在质量比为6.4时转染效果与PEI 25 kDa相当。可见,油酸修饰后的脂质体低聚物有作为非病毒基因载体的前景。  相似文献   

3.
 功能化铁氧磁性纳米粒在生物医学中应用广泛,可用于肿瘤磁感应热疗、磁共振成像(Magnetic Resonance Imaging,MRI)、药物输送及磁转染等方面。为了探讨鱼精蛋白功能化修饰的铁氧磁性纳米粒的制备及其作为基因载体在体外磁转染中的可行性,采用共沉淀法制备Fe3O4磁性纳米粒,经表面氨基化修饰后在其表面偶联鱼精蛋白。利用透射电镜、傅里叶红外光谱仪、zeta电位与粒度分析仪等,对磁性纳米粒进行形态、粒径及zeta电位分析等表征检测。共聚焦显微镜观察磁转染方法转染报告基因绿色荧光蛋白质粒pEGFP-N1进入HepG2细胞的表达,以真核转染试剂vigofect为对照。结果显示,实验中制备的磁性纳米粒粒径10nm左右,在交变磁场下具有良好的升温性能。鱼精蛋白功能化修饰磁性纳米粒后,其zeta电位进一步增大,更利于与DNA有效结合,在HepG2细胞系,其转染pEGFP-N1质粒的效率高于vigofect。研究表明,鱼精蛋白功能化修饰的铁氧磁性纳米粒可作为磁转染的有效载体,由于其同时具备在交变磁场下升温的性能,在基因治疗联合热疗的研究领域具有一定的应用价值。  相似文献   

4.
 研究了以聚乙烯亚胺(PEI)为骨架复合高迁移率族蛋白 B1 (HMGB1 )的复合型载体HMGB1/PEI的性能,以期提高非病毒基因载体的转染效率。透射电镜观察pDNA/HMGB1/PEI复合物粒子形态呈球形;动态光散射法测定粒径与表面电位,结果显示复合HMGB1后,复合物粒径降低,且随HMGB1加入量的增大表面电位有增大的趋势;凝胶电泳阻滞试验表明HMGB1可协助PEI与pDNA结合;MTT试验结果显示HMGB1/PEI复合载体的细胞毒性低于PEI;HMGB1/PEI复合载体的转染率较PEI的转染率增大2.9~4.0倍,且HMGB1可以弱化血清对转染的阻碍作用。所以HMGB1被证实能有效提高PEI的体外转染效率。  相似文献   

5.
设计靶向EGFR mRNA的脱氧核酶(EGFR DRz),以壳寡糖(COS)为材料,建立了一种有效的纳米基因细胞内传递体系,并研究其介导的靶向EGFR的脱氧核酶在Hela细胞内的生物学效应.流式结果表明COS-EGFR DRz复合体转染效率为88.7%,与脂质体转染试剂的89.7%相比无显著差异.半定量RT-PCR结果显示,经壳寡糖纳米载体递送的EGFR DRz能有效地靶向切割Hela细胞内的EGFR mRNA,使其表达下降.进一步的流式分析显示细胞被阻滞在G0~G1期,并且出现凋亡现象,其中COS组的凋亡率为19.3%,大于对照组脂质体的凋亡率13.0%.研究表明,COS较脂质体有相似的转染效率和更低的毒性,是一种潜在的、有效的脱氧核酶递送载体.  相似文献   

6.
Objective: To study the effects of the generation 4 polyamidoamine/vascular endothelial growth factor antisense oligodeoxynucleotide (G4PAMAM/VEGFASODN) compound on the expressions of vascular endothelial growth factor (VEGF) and its mRNA of breast cancer cells and on the inhibition of vascular endothelial cells. Methods: We examined the morphology of G4PAMAM/VEGFASODN compound and its pH stability, in vitro transfection efficiency and toxicity, and the expressions of VEGF and its mRNA. Methyl thiazolyl tetrazolium assay was used to detect the inhibitory function of the compound on vascular endothelial cells. Results: The compound was about 10 nm in diameter and was homogeneously netlike. From pH 5 to 10, it showed quite a buffered ability. The 48-h transfection rate in the charge ratio of 1:40 was 98.76%, significantly higher than that of the liposome group (P<0.05). None of the transfection products showed obvious toxicity on the cells. The expressions of both VEGF protein and its mRNA after G4PAMAM/VEGFASODN transfection decreased markedly. Conclusion: With a low toxicity, high safety, and high transfection rate, G4PAMAM/VEGFASODN could be a promising gene vector. Specifically, it inhibits VEGF gene expression efficiently, laying a basis for further in vivo animal studies.  相似文献   

7.
为了探讨组装环境对基因载体/DN复合物的粒径和转染效果的影响,在三种不同离子浓度溶液体系(PBS, 5% 葡萄糖溶液, H2O)中测量BDCP(biodegradable cationic polymer,一种生物可降解的阳离子聚合物)/DNA复合物粒径和结合力,进行了体外转染试验和毒性试验.结果显示,PBS最适合组装转染复合物,可取得更好的稳定性、最高的转染效率和较低细胞毒性、低溶血率;在5%葡萄糖溶液和水中组装的BDCP/质粒复合物结合力较弱,转染效率比较低.得出结论,BDCP/DNA粒径、结合力和基因转染效率受组装体系的离子强度影响.  相似文献   

8.
A tumor-targeting gene vector G250mAb-PEI-PEG has been prepared by modification of polyethylenimine (PEI) with polyethyleneglycol (PEG) and G250, a monoclonal antibody against the G250 antigen on tumor cell surface. The transfection efficiency was as high as 70% in G250 positive HeLa cells, whereas the transfection efficiency was relatively low (30%) in normal NIH3T3 cells. A plasmid encoding the short hairpin RNA (shRNA) specific for nucleostemin gene (NS) was efficiently transfected into the HeLa cells with this nonviral gene vector. RNA interference down-regulated the expression of NS gene in HeLa cells, inhibited cells proliferation and induced apoptosis. However, the growth and activity of the NIH3T3 cells were not affected under the same treatment. These results indicate that the reported nonviral gene vector, G250mAb-PEI-PEG, can target and efficiently deliver genes into HeLa cells, and has the potential for the cervical cancer treatment.  相似文献   

9.
采用表面修饰方法制备出谷氨酸修饰的壳聚糖纳米基因载体。对样品进行红外分析、粒度分析、zeta电位分析、生物相容性、凝胶阻滞分析、DNA保护性试验、体外细胞转染研究。结果显示所制得的谷氨酸修饰的壳聚糖纳米颗粒平均粒径为170nm,其zeta电位为 4.7mV。红外分析显示谷氨酸已通过酰胺键结合在壳聚糖上。MTT实验结果显示纳米颗粒与细胞有良好的生物相容性。凝胶阻滞分析和DNA保护试验结果表明纳米载体可与DNA通过电性结合作用而结合,并可以有效保护DNA,防止核酸酶对其的降解作用。而体外细胞转染的结果表明,谷氨酸修饰的纳米粒能介导pEGFP-N1质粒转染HepG2细胞并在细胞中表达绿色荧光蛋白。因此,谷氨酸修饰的壳聚糖纳米颗粒可作为一种新型非病毒基因载体介导核酸类生物大分子进入细胞内。  相似文献   

10.
制备了以二氧化硅包裹的磁性纳米粒子(MNPs)为载体,PNA(肽核酸)为识别系统,Ce(Ⅳ)/EDTA配合物为切割系统的PNA-磁性纳米切割试剂.采用TEM对制备的MNPs进行了表征,通过IP—RP—HPLC对切断产物进行了分析.结果表明,该PNA-磁性纳米人工切断试剂可以成功地结合目标DNA,并对其进行定位切断.此外,磁性纳米粒子的引入,使得切断产物的分析更加简单、快捷.  相似文献   

11.
Arginine-rich peptides have attracted considerable attention due to their distinct internalization mechanism. It was reported that arginine and guanidino moieties were able to translocate through cell membranes and played a critical role in the process of membrane permeation. In this work, arginine was conjugated to the backbone of chitosan to form a novel chitosan derivative, arginine modified chitosan (Arg-CS). Arg-CS/DNA complexes were prepared according to the method of coacervation process. The physicochemical properties of Arg-CS and Arg-CS/DNA complexes were characterized and the transfection activity and efficiency mediated by Arg-CS/DNA complexes were investigated taking HeLa cells as target cells. Arg-CS was characterized by FTIR and ^13C NMR. Arg-CS/DNA polyelectrolyte complexes were investigated by agarose gel retardation, dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the Arg-CS/DNA complexes started to form at N/P ratio of 2:1, and the size of particles varied from 100 to 180 nm. The cytotoxicity of Arg-CS and their complexes with plasmid DNA were determined by MTT assay for HeLa cells, and the results suggested that Arg-CS/DNA complexes were slightly less toxic than Arg-CS. Moreover, the derivative alone and their complexes showed significantly lower toxicity than PEI and PEI/DNA complexes, respectively. Taking HeLa cells as target cells and using pGL3-control as reporter gene, the luciferase expression mediated by Arg-CS was greatly enhanced to about 100 folds compared with the luciferase expression mediated by chitosan at different pH media. These results suggest that Arg-CS is a promising candidate as a safe and efficient vector for gene delivery and transfection.  相似文献   

12.
Arginine-rich peptides have attracted considerable attention due to their distinct internalization mechanism. It was reported that arginine and guanidino moieties were able to translocate through cell membranes and played a critical role in the process of membrane permeation. In this work, arginine was conjugated to the backbone of chitosan to form a novel chitosan derivative, arginine modified chitosan (Arg-CS). Arg-CS/DNA complexes were prepared according to the method of coacervation process. The physicochemical properties of Arg-CS and Arg-CS/DNA complexes were characterized and the transfection activity and efficiency mediated by Arg-CS/DNA complexes were investigated taking HeLa cells as target cells. Arg-CS was characterized by FTIR and 13C NMR. Arg-CS/DNA polye- lectrolyte complexes were investigated by agarose gel retardation, dynamic light scattering (DLS) and atomic force microscopy (AFM). The results revealed that the Arg-CS/DNA complexes started to form at N/P ratio of 2:1, and the size of particles varied from 100 to 180 nm. The cytotoxicity of Arg-CS and their complexes with plasmid DNA were determined by MTT assay for HeLa cells, and the results suggested that Arg-CS/DNA complexes were slightly less toxic than Arg-CS. Moreover, the derivative alone and their complexes showed significantly lower toxicity than PEI and PEI/DNA complexes, respectively. Taking HeLa cells as target cells and using pGL3-control as reporter gene, the luciferase expression mediated by Arg-CS was greatly enhanced to about 100 folds compared with the luciferase expression mediated by chitosan at different pH media. These results suggest that Arg-CS is a promising candi- date as a safe and efficient vector for gene delivery and transfection.  相似文献   

13.
Soluble adenylyl cyclase (sAC) plays a critical role in male fertility in mammals by regulating sperm hyperactivation. We aimed to study the mechanism of sAC in this phenomenon and to explore potential target sites for male contraception. In this study, in vivo electroporation and rete testis microinjection-mediated short hairpin (sh)RNA plasmids were adopted to silence sAC gene expression in male rats. The results showed that high transfection efficiency (shRNA717, 49.0% and shRNA4205, 65.0%) was achieved by shRNA plasmids injected directly into the rete testis. When the sAC was downregulated, the cyclic adenosine mono-phosphate (cAMP) content and protein phosphorylation level of spermatozoa both declined with a significantly lower hyperactivation rate compared with negative controls. The highest transfection efficiency occurred at 15 d and was obviously time dependent. Bioinformatic and experimental results showed that sAC and tmAC both belong to the AC family and might have analogous functions. ShRNA717 and shRNA4205 were the best targets for the sAC gene, suggesting that they could be candidates for male contraception. Thus, it appears feasible to achieve male contraception by silencing the expression of sAC, affecting sperm hyper-activation via a cAMP-mediated signaling pathway.  相似文献   

14.
以可自动恒温控温的锰锌铁氧体磁性纳米粒子(MZF-NPs)为核心,在其表面修饰聚乙烯亚胺(PEI)以制备一种新型纳米基因载体.利用扫描电镜、红外光谱仪、Zeta电位仪对其形貌、表面包覆功能团、电位等进行表征;UV/vis光谱仪及DNA体外结合、释放、转染实验研究了PEI在MZF-NPs上的定量吸附与修饰效果.电镜下修饰后粒子之间的聚集明显减轻、等电点由pH 7.0移至pH 11.5.PEI质量、介质的pH值以及离子强度均可影响PEI在锰锌铁氧体上的吸附.不同的吸附量也影响了纳米粒子的DNA结合、释放与转染能力.  相似文献   

15.
Magnetic nanoparticles(MNPs) are promising materials for various biomedical applications,including magnetic resonance imaging,stem cell tracking,gene/drug delivery,and cancer treatment.To increase the effectiveness of MNPs,high capture efficiency and controlled uptake of the particles by cells is required.In this paper we report the cytotoxicity and cellular uptake into SPC-A1 cells of oxidized glutathione(GSSG)-modified MNPs(GSSG@Fe3O4).Experimental findings indicated that GSSG@Fe3O4 were biocompatible,and could be efficiently taken up by SPC-A1 cells(up to 160 pg iron per cell).The internalized GSSG@Fe3O4 was retained in the cell cytoplasm for 6 generations.The uptake of GSSG@Fe3O4 into SPC-A1 cells was energy-,concentration-and time-dependent.Pinocytosis may be involved in the internalization process of GSSG@Fe3O4 into SPC-A1 cells,but this mechanism remains to be elucidated.The controlled and efficient localization of GSSG@Fe3O4 into the cytosol and long intracellular retention provides theoretical and experimental insight into the biomedical applications for these molecules.  相似文献   

16.
Polyethyleneimine (PEI) is a well known gene transfection reagent that has been extensively studied in the pass two decades. In this work, we have explored its physiochemical properties by examining its interfacial adsorption at the hydrophilic silicon oxide/water interface and its ability to immobilize bioactive DNA under physiological conditions. Its surface excess was found to show a gradual increase with pH between pH 3 and pH 10. At pH 7 the surface adsorbed amount increased with increasing salt concentration. The amount of DNA immobilized was found to be controlled by the charge ratio between PEI and DNA under these conditions. Thus, the amount of bioactive DNA immobilized can be tuned by adjusting the amount of PEI preadsorbed. This study provides useful information for fabrication of biosensors and gene chips via interfacial adsorption.  相似文献   

17.
CRISPR/Cas9 (clustered regularly interspaced short palindromic repeat/clustered regularly interspaced short palindromic repeat associated proteins 9) gene editing platform is a promising therapeutic tool for genetic disorders, due to its ability to manipulate the pathogenic gene in genomic level and to easily target specific gene by manipulating single-guide RNA. However, its successful delivery remains a challenge. Up to now, great efforts have been made to explore an effective strategy for CRISPR/Cas9 delivery. But among those delivery methods, physical methods are mainly operated on cultured cells thus limited to laboratorial use; viral vectors are hindered by fetal immunogenic and carcinogenic effects thus dubious in clinical application. Therefore, cationic polymeric vectors, with the ability to interact with CRISPR/Cas9 system to form a nanoformulation as a non-viral approach, are attracting increasing attentions, due to advantages such as well protection of cargos, less limitation in payload size, low immunogenicity or carcinogenicity, potential modifications for further functions, and ease in mass production. In this review, the recent discoveries on polymeric vectors utilized in delivery of CRISPR/Cas9 system will be summarized. With emphasis on advanced features of those polymeric vectors or their nanoformulations to meet the demands of different CRISPR/Cas9 delivery forms (plasmid, mRNA or protein), the detailed illustrations on their disease treatment applications, such as cancer, diabetes or antibiotic-resistant infections, will also be reviewed.  相似文献   

18.
通过原子力显微镜观测阳离子脂质体及其与DNA复合物的结构。将一定量的阳离子脂质体以及阳离子脂质体/DAN复合物滴加到新解理的云母片上,干燥后用原子力显微镜观测。结果表明,阳离子脂质体在云母片上形成的颗粒为球形或椭圆形,粒径分布较为均匀;阳离子脂质体/DNA复合物在云母片上的颗粒形状不规则,粒径分布不均且比空白脂质体的粒径大。通过原子力显微镜可以快速有效地观测脂质体以及脂质体/DNA复合物的粒径、表面形态等,为分析脂质体的物理化学性质与基因转运效率的关系提供了一种研究方法。  相似文献   

19.
Vectors pose most pivotal problem of gene therapy[1]. Because of the high transfection efficiency both in vitro and in vivo, the viral vector has been employed in 70% clinical trials of gene therapy (http://www.wiley.co.uk/ genmed/clinical). However, thei…  相似文献   

20.
肿瘤基因治疗载体的研究进展   总被引:2,自引:0,他引:2  
对在肿瘤基因治疗中较常见的载体--病毒载体(痘苗病毒载体、腺病毒与腺病毒相关载体、单纯疱疹病毒和逆转录病毒)和非病毒载体(脂质体和稳定质粒--脂质颗粒)进行了介绍,同时对其存在的问题作了简要阐述,并对该研究前景进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号