首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regulation of phagocyte migration and recruitment by Src-family kinases   总被引:2,自引:0,他引:2  
Src-family kinases (SFKs) regulate different granulocyte and monocyte/macrophage responses. Accumulating evidence suggests that members of this family are implicated in signal transduction pathways regulating phagocytic cell migration and recruitment into inflammatory sites. Macrophages with a genetic deficiency of SFKs display marked alterations in cytoskeleton dynamics, polarization and migration. This same phenotype is found in cells with either a lack of SFK substrates and/or interacting proteins such as Pyk2/FAK, c-Cbl and p190RhoGAP. Notably, SFKs and their downstream targets also regulate monocyte recruitment into inflammatory sites. Depending on the type of assay used, neutrophil migration in vitro may be either dependent on or independent of SFKs. Also neutrophil recruitment in in vivo models of inflammation may be regulated differently by SFKs depending on the tissue involved. In this review we will discuss possible mechanisms by which SFKs may regulate phagocytic cell migratory abilities.  相似文献   

2.
Despite the absence of classical tyrosine kinases encrypted in the kinome of Plasmodium falciparum, biochemical analyses have detected significant tyrosine phosphorylation in its cell lysates. Supporting such phosphorylation is critical for parasite development. These observations have thus raised queries regarding the plasmodial enzymes accountable for tyrosine kinase activities in vivo. In the current investigation, immunoblot analysis intriguingly demonstrated that Pfnek3, a plasmodial mitogen-activated protein kinase kinase (MAPKK), displayed both serine/threonine and tyrosine kinase activities in autophosphorylation reactions as well as in phosphorylation of the exogenous myelin basic protein substrate. The results obtained strongly support Pfnek3 as a novel dual-specificity kinase of the malarial parasite, even though it displays a HGDLKSTN motif in the catalytic loop that resembles the consensus HRDLKxxN signature found in the serine/threonine kinases. Notably, its serine/threonine and tyrosine kinase activities were found to be distinctly influenced by Mg2+ and Mn2+ cofactors. Further probing into the regulatory mechanism of Pfnek3 also revealed tyrosine phosphorylation to be a crucial factor that stimulates its kinase activity. Through biocomputational analyses and functional assays, tyrosine residues Y117, Y122, Y172, and Y238 were proposed as phosphorylation sites essential for mediating the catalytic activities of Pfnek3. The discovery of Pfnek3’s dual role in phosphorylation marks its importance in closing the loop for cellular regulation in P. falciparum, which remains elusive to date.  相似文献   

3.
Although the yeast genome does not encode bona fide protein tyrosine kinases, tyrosine-phosphorylated proteins are numerous, suggesting that besides dual-specificity kinases, some Ser/Thr kinases are also committed to tyrosine phosphorylation in Saccharomyces cerevisiae. Here we show that blockage of the highly pleiotropic Ser/Thr kinase CK2 with a specific inhibitor synergizes with the overexpression of Stp1 low-molecular-weight protein tyrosine phosphatase (PTP) in inducing a severe growth-defective phenotype, consistent with a prominent role for CK2 in tyrosine phosphorylation in yeast. We also present in vivo evidence that immunophilin Fpr3, the only tyrosine-phosphorylated CK2 substrate recognized so far, interacts with and is dephosphorylated by Spt1. These data disclose a functional correlation between CK2 and LMW-PTPs, and suggest that reversible phosphorylation of Fpr3 plays a role in the regulation of growth rate and budding in S. cerevisiae.Received 15 January 2004; received after revision 20 February 2004; accepted 4 March 2004  相似文献   

4.
Receptor tyrosine kinases (RTK) have long being studied with respect to the “canonical” signaling. This includes ligand-induced activation of a receptor tyrosine kinase at the cell surface that leads to receptor dimerization, followed by its phosphorylation in the intracellular domain and activation. The activated receptor then recruits cytoplasmic signaling molecules including other kinases. Activation of the downstream signaling cascade frequently leads to changes in gene expression following nuclear translocation of downstream targets. However, RTK themselves may localize within the nucleus, as either full-length molecules or cleaved fragments, with or without their ligands. Significant differences in this mechanism have been reported depending on the individual RTK, cellular context or disease. Accumulating evidences indicate that the colony-stimulating factor-1 receptor (CSF-1R) may localize within the nucleus. To date, however, little is known about the mechanism of CSF-1R nuclear shuttling, as well as the functional role of nuclear CSF-1R.  相似文献   

5.
The tyrosine phosphorylation cascade is a hallmark of platelet-derived growth factor (PDGF)- induced signal transduction. The amplitude and propagation of the tyrosine phosphorylation signal relies on the balance between tyrosine kinase and tyrosine phosphatase. The tyrosine kinase is latent in the absence of stimulation, whereas the tyrosine phosphatase is highly and constitutively active. Therefore, the kinase activation should be accompanied by temporal and spatial inactivation of tyrosine phosphatase to achieve the robust amplification of tyrosine phosphorylation. For the past decade, reactive oxygen species have been receiving a great deal of attention with regard to their ability to shut down tyrosine phosphatase activities in a reversible manner. In this article, the crosstalk between tyrosine phosphorylation and reactive oxygen species in PDGF signaling is discussed. Received 2 October 2006; received after revision 13 November 2006; accepted 27 November 2006  相似文献   

6.
The role of some serine/threonine kinases in the regulation of mitochondrial physiology is now well established, but little is known about mitochondrial tyrosine kinases. We showed that tyrosine phosphorylation of rat brain mitochondrial proteins was increased by in vitro addition of ATP and H2O2, and also during in situ ATP production at state 3, and maximal reactive oxygen species production. The Src kinase inhibitor PP2 decreased tyrosine phosphorylation and respiratory rates at state 3. We found that the 39-kDa subunit of complex I was tyrosine phosphorylated, and we identified putative tyrosine-phosphorylated subunits for the other complexes. We also have strong evidence that the FoF1-ATP synthase α chain is probably tyrosine-phosphorylated, but demonstrated that the β chain is not. The tyrosine phosphatase PTP 1B was found in brain but not in muscle, heart or liver mitochondria. Our results suggest that tyrosine kinases and phosphatases are involved in the regulation of oxidative phosphorylation.Received 7 January 2005; received after revision 19 April 2005; accepted 22 April 2005  相似文献   

7.
In fetal alcohol syndrome (FAS), cerebellar hypoplasia is associated with impaired insulin-stimulated survival signaling. This study characterizes ethanol dose-effects on cerebellar development, expression of genes required for insulin and insulin-like growth factor (IGF) signaling, and the upstream mechanisms and downstream consequences of impaired signaling in relation to acetylcholine (ACh) homeostasis. Pregnant Long Evans rats were fed isocaloric liquid diets containing 0%, 2%, 4.5%, 6.5%, or 9.25% ethanol from gestation day 6. Ethanol caused dose-dependent increases in severity of cerebellar hypoplasia, neuronal loss, proliferation of astrocytes and microglia, and DNA damage. Ethanol also reduced insulin, IGF-I, and IGF-II receptor binding, insulin and IGF-I receptor tyrosine kinase activities, ATP, membrane cholesterol, and choline acetyltransferase (ChAT) expression. In vitro studies linked membrane cholesterol depletion to impaired insulin receptor binding and insulin-stimulated ChAT. In conclusion, cerebellar hypoplasia in FAS is mediated by insulin/IGF resistance with attendant impairments in energy production and ACh homeostasis. Received 4 May 2006; received after revision 13 June 2006; accepted 20 June 2006  相似文献   

8.
Protein kinases: which one is the memory molecule?   总被引:12,自引:0,他引:12  
Encoding of new experiences is likely to induce activity-dependent modifications in the brain. Studies in organisms far apart on the phylogenetic scale have shown that similar, sometimes identical, signal transduction pathways subserve plasticity in neuronal systems, and they may play pivotal roles in the formation of long-term memories. It has become evident that phosphorylation/dephosphorylation reactions are critical for the initiation of cellular mechanisms that embody, retain and modify information in neural circuits. Although physiological investigations on synaptic plasticity have had a major impact, we have concentrated our review on behavioural studies that provide direct or indirect evidence for a role of kinases in mechanisms underlying memory formation. From these, it appears that the learning event induces activation of a variety of kinases with specific time courses. For instance, the calcium/calmodulin-dependent protein kinase II seems to participate in an early phase of memory formation. Apparently, activation of both protein tyrosine kinases and mitogen-activated protein kinases is required for much longer and may thus have a particular function during transformation from short-term into long-term memory. Quite different time courses appear for protein kinase C (PKC) and protein kinase A (PKA), which may function at two different time points, shortly after training and again much later. This suggests that PKC and PKA might play a role at early and late stages of memory formation. However, we have considered some examples showing that these signalling pathways do not function in isolation but rather interact in an intricate intracellular network. This is indicative of a more complex contribution of each kinase to the fine tuning of encoding and information processing. To decipher this complexity, pharmacological, biochemical and genetic investigations are more than ever necessary to unravel the role of each kinase in the syntax of learning and memory formation.  相似文献   

9.
Cytonuclear signaling is essential for long-term alterations of cellular properties. Several pathways involving regulated nuclear accumulation of Ser/Thr kinases have been described but little is known about cytonuclear trafficking of tyrosine kinases. Proline-rich tyrosine kinase 2 (Pyk2) is a cytoplasmic non-receptor tyrosine kinase enriched in neurons and involved in functions ranging from synaptic plasticity to bone resorption, as well as in cancer. We previously showed the Ca2+-induced, calcineurin-dependent, nuclear localization of Pyk2. Here, we characterize the molecular mechanisms of Pyk2 cytonuclear localization in transfected PC12 cells. The 700–841 linker region of Pyk2 recapitulates its depolarization-induced nuclear accumulation. This region includes a nuclear export motif regulated by phosphorylation at residue S778, a substrate of cAMP-dependent protein kinase and calcineurin. Nuclear import is controlled by a previously identified sequence in the N-terminal domain and by a novel nuclear targeting signal in the linker region. Regulation of cytonuclear trafficking is independent of Pyk2 activity. The region regulating nuclear localization is absent from the non-neuronal shorter splice isoform of Pyk2. Our results elucidate the mechanisms of Ca2+-induced nuclear accumulation of Pyk2. They also suggest that Pyk2 nuclear accumulation is a novel type of signaling response that may contribute to specific long-term adaptations in neurons.  相似文献   

10.
11.
The RAF family of kinases are key components acting downstream of receptor tyrosine kinases and cells employ several distinct mechanisms to strictly control their activity. RAF transitions from an inactive state, where the N-terminal regulatory region binds intramolecularly to the C-terminal kinase domain, to an open state capable of executing the phosphoryl transfer reaction. This transition involves changes both within and between the protein domains in RAF. Many different proteins regulate the transition between inactive and active states of RAF, including RAS and KSR, which are arguably the two most prominent regulators of RAF function. Recent developments have added several new twists to our understanding of RAF regulation. Among others, dimerization of the RAF kinase domain is emerging as a crucial step in the RAF activation process. The multitude of regulatory protein–protein interactions involving RAF remains a largely untapped area for therapeutic applications.  相似文献   

12.
Our current understanding of the structure, mechanism of action and modes of regulation of the protein tyrosine kinase family owes a great deal to structural biology. Structures are now available for more than 20 different tyrosine kinase domains, many of these in multiple conformational states. They form the basis for the design of experiments to further investigate the role of different structural elements in the normal function and regulation of the protein and in the pathogenesis of many human diseases. Once thought to be too similar to be specifically inhibited by a small molecule, structural differences between kinases allow the design of compounds which inhibit only an acceptable few. This review gives a general overview of protein tyrosine kinase structural biology, including a discussion of the strengths and limitations of the investigative methods involved. Received 2 May 2006; received after revision 21 June 2006; accepted 9 August 2006  相似文献   

13.
The type III receptor tyrosine kinase FLT3 is frequently mutated in acute myeloid leukemia. Oncogenic FLT3 mutants display constitutive activity leading to aberrant cell proliferation and survival. Phosphorylation on several critical tyrosine residues is known to be essential for FLT3 signaling. Among these tyrosine residues, Y842 is located in the so-called activation loop. The position of this tyrosine residue is well conserved in all receptor tyrosine kinases. It has been reported that phosphorylation of the activation loop tyrosine is critical for catalytic activity for some but not all receptor tyrosine kinases. The role of Y842 residue in FLT3 signaling has not yet been studied. In this report, we show that Y842 is not important for FLT3 activation or ubiquitination but plays a critical role in regulating signaling downstream of the receptor as well as controlling receptor stability. We found that mutation of Y842 in the FLT3-ITD oncogenic mutant background reduced cell viability and increased apoptosis. Furthermore, the introduction of the Y842 mutation in the FLT3-ITD background led to a dramatic reduction in in vitro colony forming capacity. Additionally, mice injected with cells expressing FLT3-ITD/Y842F displayed a significant delay in tumor formation, compared to FLT3-ITD expressing cells. Microarray analysis comparing gene expression regulated by FLT3-ITD versus FLT3-ITD/Y842F demonstrated that mutation of Y842 causes suppression of anti-apoptotic genes. Furthermore, we showed that cells expressing FLT3-ITD/Y842F display impaired activity of the RAS/ERK pathway due to reduced interaction between FLT3 and SHP2 leading to reduced SHP2 activation. Thus, we suggest that Y842 is critical for FLT3-mediated RAS/ERK signaling and cellular transformation.  相似文献   

14.
In recent years, a number of cross-talk systems have been identified which feed into the insulin signalling cascade at the level of insulin receptor substrate (IRS) tyrosine phosphorylation, e.g., receptor and non-receptor tyrosine kinases and G-protein-coupled receptors. At the molecular level, a number of negative modulator and feedback systems somehow interacting with the beta-subunit (catecholamine-, phorbolester-, or tumor necrosis factor-alpha-induced serine/threonine phosphorylation, carboxy-terminal trimming by a thiol-dependent protease, association of inhibitory/regulatory proteins such as RAD, PC1, PED, alpha2-HS-glycoprotein) have been identified as candidate mechanisms for the impairment of insulin receptor function by elevations in the activity and/or amount of the corresponding modification enzymes/inhibitors. Both decreased responsiveness and sensitivity of the insulin receptor beta-subunit for insulin-induced tyrosine autophosphorylation have been demonstrated in several cellular and animal models of metabolic insulin resistance as well as in the adipose tissue and skeletal muscle of diabetic patients and obese Pima Indians compared to non-obese subjects. Therefore, induction of the insulin signalling cascade by bypassing the defective insulin receptor kinase may be useful for the therapy of non-insulin dependent diabetes mellitus. During the past two decades, phosphoinositolglycans (PIGs) of various origin have been demonstrated to exert potent insulin-mimetic metabolic effects upon incubation with cultured or isolated muscle and adipose cells. However, it remained to be elucidated whether these compounds actually manage to trigger insulin signalling and if so at which level of hierarchy within the signalling cascade the site of interference is located. Recent studies using isolated rat adipocytes and chemically synthesized PIG compounds point to IRS1/3 tyrosine phosphorylation by p59Lyn kinase as the site of cross-talk, the negative regulation of which by interaction with caveolin is apparently abrogated by PIG. This putative mechanism is thus compatible with the recently formulated caveolin signalling hypothesis, the supporting data for which are reviewed here. Though we have not obtained experimental evidence for the involvement of PIG in physiological insulin action, the potential cross-talk between insulin and PIG signalling, including the caveolae/detergent-insoluble glycolipid-enriched rafts as the compartments where the corresponding signalling components are concentrated, thus represent novel targets for signal transduction therapy.  相似文献   

15.
Nerve growth factor (NGF) belongs by sequence homology to the neurotrophins, a family of proteins binding the same p75 receptor and closely related members of the Trk family of receptor tyrosine kinases. Fundamental in the vertebrate nervous system, neurotrophin signals have also been suggested as essential for relatively complex nervous systems occurring in invertebrate species that live longer than Caenorhabditis elegans and Drosophila melanogaster. Mammalian neurotrophins have been found to influence invertebrate neuronal growth. However, there are only a few data on the presence of molecules related to neurotrophin signalling components in invertebrates. Our studies provide evidence that analogues of neurotrophins and neurotrophin receptors are expressed in Eisenia foetida earthworms. In particular, NGF-like and Trk-like immunoreactive proteins are both expressed in the nervous system, whereas p75-like positivity identifies tubular structures associated with dorsal pores that are involved in the earthworm response to mechanical irritation or stress. Received 12 November 2001; received after revision 8 January 2002; accepted 8 January 2002  相似文献   

16.
Role of Sam68 as an adaptor protein in signal transduction   总被引:3,自引:0,他引:3  
Sam68, the substrate of Src in mitosis, belongs to the family of RNA binding proteins. Sam68 contains consensus sequences to interact with other proteins via specific domains. Thus, Sam68 has various proline-rich sequences to interact with SH3 domain-containing proteins. Moreover, Sam68 also has a C-terminal domain rich in tyrosine residues that is a substrate for tyrosine kinases. Tyrosine phosphorylation of Sam68 promotes its interaction with SH2 containing proteins. The association of Sam68 with SH3 domain-containing proteins, and its tyrosine phosphorylation may negatively regulate its RNA binding activity. The presence of these consensus sequences to interact with different domains allows this protein to participate in signal transduction pathways triggered by tyrosine kinases. Thus, Sam68 participates in the signaling of T cell receptors, leptin and insulin receptors. In these systems Sam68 is tyrosine phosphorylated and recruited to specific signaling complexes. The participation of Sam68 in signaling suggests that it may function as an adaptor molecule, working as a dock to recruit other signaling molecules. Finally, the connection between this role of Sam68 in protein-protein interaction with RNA binding activity may connect signal transduction of tyrosine kinases with the regulation of RNA metabolism.Received 16 July 2004; received after revision 12 August 2004; accepted 18 August 2004  相似文献   

17.
The synapsins, the first identified synaptic vesicle-specific proteins, are phosphorylated on multiple sites by a number of protein kinases and are involved in neurite outgrowth and synapse formation as well as in synaptic transmission. In mammals, the synapsin family consists of at least 10 isoforms encoded by 3 distinct genes and composed by a mosaic of conserved and variable domains. The synapsins are highly conserved evolutionarily, and orthologues have been found in invertebrates and lower vertebrates. Within nerve terminals, synapsins are implicated in multiple interactions with presynaptic proteins and the actin cytoskeleton. Via these interactions, synapsins control several mechanisms important for neuronal homeostasis. In this review, we describe the main functional features of the synapsins, in relation to the complex role played by these phosphoproteins in neuronal development.  相似文献   

18.
Protein tyrosine phosphatases (PTPs) have been generally recognised as key modulators of cell proliferation, differentiation, adhesion and motility. During signalling, several PTPs undergo two posttranslational modifications that greatly affect their enzymatic activity: tyrosine phosphorylation and cysteine oxidation. Although these modifications share their reversibility depending on the intracellular environment, their effects on enzymatic activity are opposite, tyrosine phosphorylation being correlated to enzyme activation and thiol oxidation to complete inactivation. Several papers have suggested that both these modifications occur in response to the same stimuli i.e. cell proliferation induced by numerous growth factors and cytokines. Conversely, the possibility that these two regulation mechanisms act simultaneously on PTPs has not been established and very few reports investigated this dual regulation of PTPs. To underline the relevance of the question, we discuss several possibilities: (i) that tyrosine phosphorylation and cysteine oxidation of PTPs may share the same target molecules but with different kinetics; (ii) that PTP phosphorylation and oxidation may take place on different subcellular pools of the same protein and (iii) that these two modifications, although having divergent effects on enzyme activity, cooperate in the integrated and coordinated function of PTPs during receptor tyrosine kinase signalling. We believe that our perspective will open new perspectives on an ancient problem – the apparent contradiction of opposing enzymatic regulation of many PTPs – thus clarifying their role as positive or negative transducers (or both) of many extracellular stimuli.Received 11 October 2004; received after revision 26 January 2005; accepted 10 February 2005 Available online 29 March 2005  相似文献   

19.
The lymphocyte-specific protein tyrosine kinase (Lck), which belongs to the Src kinase-family, is expressed in neurons of the hippocampus, a structure critical for learning and memory. Recent evidence demonstrated a significant downregulation of Lck in Alzheimer’s disease. Lck has additionally been proposed to be a risk factor for Alzheimer’s disease, thus suggesting the involvement of Lck in memory function. The neuronal role of Lck, however, and its involvement in learning and memory remain largely unexplored. Here, in vitro electrophysiology, confocal microscopy, and molecular, pharmacological, genetic and biochemical techniques were combined with in vivo behavioral approaches to examine the role of Lck in the mouse hippocampus. Specific pharmacological inhibition and genetic silencing indicated the involvement of Lck in the regulation of neuritic outgrowth. In the functional pre-established synaptic networks that were examined electrophysiologically, specific Lck-inhibition also selectively impaired the long-term hippocampal synaptic plasticity without affecting spontaneous excitatory synaptic transmission or short-term synaptic potentiation. The selective inhibition of Lck also significantly altered hippocampus-dependent spatial learning and memory in vivo. These data provide the basis for the functional characterization of brain Lck, describing the importance of Lck as a critical regulator of both neuronal morphology and in vivo long-term memory.  相似文献   

20.
Signal transduction via the stem cell factor receptor/c-Kit   总被引:6,自引:0,他引:6  
Together with its ligand, stem cell factor, the receptor tyrosine kinase c-Kit is a key controlling receptor for a number of cell types, including hematopoietic stem cells, mast cells, melanocytes and germ cells. Gain-of-function mutations in c-Kit have been described in a number of human cancers, including testicular germinomas, acute myeloid leukemia and gastrointestinal stromal tumors.Stimulation of c-Kit by its ligand leads to dimerization of receptors, activation of its intrinsic tyrosine kinase activity and phosphorylation of key tyrosine residues within the receptor. These phosphorylated tyrosine residues serve as docking sites for a number of signal transduction molecules containing Src homology 2 domains, which will thereby be recruited to the receptor and activated many times through phosphorylation by the receptor. This review discusses our current knowledge of signal transduction molecules and signal transduction pathways activated by c-Kit and how their activation can be connected to the physiological outcome of c-Kit signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号