首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

2.
在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to ∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to ∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to ∞(dx) integral from α to ∞(|f(x,y)|dy),integral from α to ∞(dy) integral from a to ∞(|f(x,y)dx)至少有一个存在(有限)。那末  相似文献   

3.
定义1.标准函数f(x)在(a,b)(?)~*R上有定义,如果 {n/integral from n=a_n to n f(x)dx存在且有限}∈U其中a=[a_n],b=[b_n],U为自然数集N的自由超滤子,integral from n=a_n to b_n f(x)dx是Riemann意义下的积分,则称f(x)在(a, b)(?)~*R上可积,称非标准数[integral from n=a_n to n f(x)dx]为f(x)在(a, b)(?)~*R上的积分,记作integral from n=(a.b) to f(x)dx。  相似文献   

4.
如果a_n=(1/π)integral from -πto πf(x)Cos nx dx(n=0,1,2,…)b_n=(1/π)integral from -πto πf(x)Sin nxdx(n=1,2,…)则称级数(a_0/2) sum from n=1 to ∞(a_n Cos nx b_n Sin nx)为f(x)的Foureir 级数。据Euler 公式e~(ix)=Cos x iSin x,f(x)的Fourier 级数可以写成复数形式:  相似文献   

5.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

6.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

7.
§1.总说我们记在[-π,π]上是勒贝格可积的,以2π为周期的周期函数的全体为L_(2π)。设f(x)∈L_(2π),其富里埃级数是?(f,x)=a_0/2+sum from n=1 to ∞(1/n)(a_ncosnx+b_nsinnx)=a_0/2+sum from n=1 to ∞(1/n)A_n(x) (1)级数(1)的共轭级数是?(f,x) = sum from n=1 to ∞(1/n)(-b_ncosnx+a_nsinnx) 我们还将考虑级数  相似文献   

8.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

9.
<正> 在微积分中,为解决含参量积分的求导与积分顺序可交换的问题,教科书上多采用下述定理1与定理2。 定理1 若函数f(x,y)与f_y(x,y)在R[a,b;c,d]上连续,则函数φ(y)=integral from n=a to b(f(x,y)dx)在[c,d]上可导,且 φ′(y)=integral from n=a to b(f_y(x,y)dx) (1)  相似文献   

10.
文献〔1〕中对其中 f(x)为冪级数,即 f(x)=sum from n=0 to ∞(C_nx~n) ,在2≤ω<3(C_n 终规为正),ω=2(C_n 可正可负)和 f(x)为勒让特(切比晓夫)级数,f(x)=sun from n=0 to ∞(C_nP_n(x)在1≤ω<2(C_n 终规为正)情形下的存在性分别作了讨论。本文推广了文献〔1〕中的定理。  相似文献   

11.
本文利用具有重结点的自然样条函数,讨论了线性泛函Ff=sum from i=0 to n-1[integral from a to b a_i(x)D~i f(x)dx+sum from j=0 to L~1 b_(ij)D~i f(x_(ij))]的广义Sard逼近问题。文中给出了线性泛函Lf=sum from i=0 to k sum from j=0 to k_1-1 a_(ij)D~j f(x_i)逼近F为n-1阶准确的存在定理与唯一性定理;给出了L做为F的广义Sard逼近的充分必要条件。  相似文献   

12.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

13.
大家知道,如果f(x)在〔a,b〕上非负连续且integral from a to b(f(x)dx=0),则f(x)在〔a,b〕上恒等于0.但若把条件减弱为“f(x)在〔a.b〕上非负可积且integral from a to ∞b(f(x)dx=0)”,是否还能作出“在〔a,b〕  相似文献   

14.
二重积分优化复化梯形与辛卜生算法   总被引:1,自引:0,他引:1  
本文采用三等分法给出区域D(a≤x≤b,c≤y≤d)上二重积分∫∫f(x,y)dxdy复化梯形算法与复化辛卜生算法。本文为了这两个算法在计算机上实施计算过程中,免去大量函数值的重复计算,加速收敛达到减少迭代计算的次数,对这两个算法步骤等作了优化。  相似文献   

15.
本文主要结果如下:利用无穷大量的阶和阶数以及新的广义数的概念和性质,建立了正项级数敛散性的下述判别法:广义数判别法对于正项级数公项f(n),若(i)f(x)不→0(x→ ∞),则级数sum from n=1 to ∞(f(n))发散;(ii)f(x)→0(x→ ∞)而1'.阶数O~m(1/(f(x)))≥1 sum from i=1 to(p-1)(α_i βα_p)(F_pβ~(x)的阶数)其中F_pβ~(x)=xlogx……(log…logx)~β(?);β>1,p 都可任意选定,或2'1/(f(x))的阶(次)高于或等于F_pβ~(x)的,则级数sum from n=1 to ∞(f(n))收敛;(iii)f(x)→0(x→ ∞),而1'阶数O~m(1/(f(x)))≤1 sum from i=1 to p α_i(F_p(x)的阶数)其中F_p(x)=xlogx…(log…logx)(?),p 可任意选定,或2'1/(f(x))的阶(次)低于或等于F_p(x)的, 则级数sum from n=1 to ∞(f(n))发散。此法应用很广,一般的判别方法,如柯西判别法,达朗贝尔、拉贝以及高斯判别法等,所能适用的本法都适用,它们所不适用的本法也能适用,而且方法总的说来比较单一,只须考虑阶数和阶(次)。  相似文献   

16.
设x_n的密度函数为f(x),X∈R~d,f_n(x)=(nh~d)~(-1)sum from i-1 to n k((x-x_i)/h)为f的核估计,其中0相似文献   

17.
本文给出了 km 阶 Bernstein-kantorovic 算子B_n~k_n(f.x)=(n+k_n)~k_n sum from v=0 to n integral from 0…to 1/a+k_n integral from 0…to 1/a+k_n f(v/n+k_n+S1+…+S_k_n)ds1…ds_k_npnv(x)其中正整数列 k_n 满足 n k_n/n=0,而 f(x)eL_[0,1],pnv(x)=(n/v)xv(i-x)~(n-v)。而且讨论了当n k_u/n=0时算子 B_n~(k_u) 在 Orlicz 空间中的逼近阶.  相似文献   

18.
三重积分优化复化梯形与Simpson数值算法   总被引:1,自引:0,他引:1  
本文采用三等分法给出立方区域Ω(a≤x≤b,c≤y≤d,e≤z≤g)上三重积分 I=∫_a~b∫_c~d∫_e~gf(x,y,z)dxdydz的复化梯形与Simpson数值算法。本文对其算法步骤采用优化原则,使它在计算机上计算过程中,不仅免去大量函数值的重复计算,而且使它加速收敛达到减少迭代计算的次数。  相似文献   

19.
本文得到了Hardy算子Tf(x)=integral from n=0 to z(f(t)dt)从空间L~p(R+,vdx)到L~q(R+,Udx)有界的权函数对(u,v)的特征,其中1≤q相似文献   

20.
本文讨论形如integral from n=-1 to 1 (f(x)e~(iθx))dx(θ为大的正数)的积分的计算方法。构造了计算上述积分的一种Gauss型求积公式。并把所得的公式与已有的一些结果作了比较。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号