共查询到17条相似文献,搜索用时 62 毫秒
1.
汪裕才 《四川师范大学学报(自然科学版)》2007,30(2):157-159
利用修正的Jacobi椭圆函数展开方法,获得了一类耦合非线性Klein—Gordon方程组的周期解.在极限条件下,这些解退化成孤波解.借助于Matheinatica软件,此方法能部分地在计算机上实现.这种方法也可以用来求解其它的非线性方程 相似文献
2.
利用F-展开法,求出了非线性耦合Klein-Gordon方程组的许多新的由Jacobi椭圆函数表示的周期波解.当模趋于1和0时,分别得到了孤立波解及三角函数解. 相似文献
3.
在新近提出的F-展开法的基础上,对F-展开法做了修改,导出了非线性耦舍Schroedinger-Kdv方程组的由Jacobi椭圆函数表示的周期波解;当模数m→1,0时,可得到双曲函数解(包括孤波解). 相似文献
4.
非线性Klein-Gordon方程新的精确解 总被引:1,自引:0,他引:1
在投射的Riccati方程法和Jacobi椭圆函数展开法的基础上,构造了4种新的Jacobi椭圆函数解,从而将Jacobi椭圆函数展开法作了进一步的推广.应用该方法并借助计算机代数系统Mathematica,求出非线性Klein-Gordon方程一系列新的精确周期解.当m→1或m→0时,这些解退化为相应的三角函数解和孤波解. 相似文献
5.
利用F-展开法,求出了非线性耦合Klein—Gordon方程组的许多新的由Jacobi椭圆函数表示的周期波解。当模趋于1和0时,分别得到了孤立波解及三角函数解。 相似文献
6.
从Legendre椭圆积分和Jacob i椭圆函数的定义出发,得到了新的变换,并把它用于非线性Schr d inger方程、KdV方程和BBM方程的求解中.这种Jacob i椭圆函数和三角函数的转换,既简化了求解过程,又能够得到周期解和孤波解,这样便于复杂方程的求解. 相似文献
7.
在新近提出的F-展开法的基础上,对F-展开法做了修改,导出了非线性耦合Schrd inger-Kdv方程组的由Jacobi椭圆函数表示的周期波解;当模数m→1,0时,可得到双曲函数解(包括孤波解). 相似文献
8.
曹瑞 《兰州大学学报(自然科学版)》2007,43(6):112-116
改进了最近提出的F-展开方法,并且利用改进的F-展开方法构造了一类非线性藕合Klein-Gordon方程的精确解.当Jacobi椭圆函数的模m趋向于1时,得到孤立波解.与F-展开方法相比,此方法求得的解更为丰富. 相似文献
9.
在新近提出的 F-展开法的基础上,对F-展开法做了修改,导出了非线性耦合Schr(o)dinger-Kdv方程组的由Jacobi椭圆函数表示的周期波解;当模数 m →1,0 时,可得到双曲函数解(包括孤波解). 相似文献
10.
F展开法在求解一类Klein-Gordon方程中的应用 总被引:1,自引:1,他引:1
提出了一种求数学物理问题中非线性发展方程周期波解的扩展F展开法,是近来提出的Jacobi椭圆函数展开法的概括.利用齐次平衡原则和扩展F展开法,求出了一类Klein-Gordon方程更丰富的用Jacobi椭圆函数表示的周期波解. 相似文献
11.
基于刘等(物理学报,2001,50(11):2068—2072.)提出的Jacobi椭圆函数展开方法,将修正的Jacobi椭圆函数展开方法应用于求解修正的BBM方程和结合的KdV—mKdV方程,得到了许多新的用Jacobi椭圆函数表示的周期解,应用该方法得到的周期解在极限情况下可以退化为相应的孤立波解,此方法还可以用于求解其它的非线性方程. 相似文献
12.
一类五阶非线性发展方程新的周期解 总被引:2,自引:0,他引:2
通过构造辅助方程,把一类五阶非线性发展方程的求解问题转化为非线性代数方程组的求解问题,由此求得了该类五阶非线性方程的新的周期解.在极限情形,也得到了孤波解和三角函数解. 相似文献
13.
利用F展开法求出Klein-Gordon方程Utt-Utt+M2U-nU2=0的用Jacobi椭圆函数表示的二十种形式的周期波解.进而,在极限的情形下,得到十个双曲函数表示的孤立波解和六个三角函数表示的周期波解. 相似文献
14.
黄正洪 《西南师范大学学报(自然科学版)》2002,27(6):857-860
利用Jacobi椭圆函数得到了非线性波动方程ht (hu)x uxxx=0 uxxt-ut-hx-uux-0 ut hx uux=0 ht ux=0的椭圆余弦波解及若干性质。 相似文献
15.
F-展开法,可看作是Jacobi椭圆函数展开方法的概括或浓缩。利用该法求出了长短波相互作用方程组的许多新的由Jacobi椭圆函数表示的周期波解。当模趋于1时,也得到了孤立波解。 相似文献
16.
17.
应用雅克比椭圆函数展开法求解了广义混和KdV-mKdV方程,并引入了一个转化用以简化求解过程,许多解可以由此而得到.若取定一定的参数,则可以推导出一些著名非线性方程的解. 相似文献