首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
欧洲核子研究中心宣布,中国科学家参与的国际性大科学工程之一——大型强子对撞机于2010年3月30日日内瓦时间13时06分对撞成功。在跨越日内瓦市郊、瑞士和法国边界的大型强子对撞机(LHC)上,总能量为7万亿电子伏特的两个束流对撞成功。这次迄今为止世界上能量最高的对撞,标志着大型强子对撞机物理研究的启动,拉开了粒子物理新时代的序幕,人类开始寻找占宇宙成分96%的暗物质和暗能量。  相似文献   

2.
《科学通报》2015,(4):420
<正>现行理论认为,宇宙大爆炸产生了几乎等量的物质和反物质.由于物质和反物质在微观性质上存在一定的差异(物理学上称为"电荷共轭-宇称对称性破缺",简称CP破坏),宇宙经过长时间的演化,形成我们今天观测到的由正物质组成的世界.欧洲大型强子对撞机(LHC)是目前世界上最大、能量最高的粒子加速器.大型强子对撞机底夸克实验(LHCb)是LHC上的4个主要探测器之一,它的主要物理目标是测量  相似文献   

3.
罗尔夫·D·霍耶尔(Rolf.D.Heuer)是欧洲核子中心(CERN)粒子物理实验室主任,对大型强子对撞机(LHC)拥有预算掌控权——LHC以高于世界任何其他加速器的能量产生希格斯粒子——但霍耶尔对于检测粒子碰撞碎片的两项实验的权威则要小得多,LHC是由数以千计的物理学家建造起来的,也是由他们管理和运行的. 直到6月中旬之前,霍耶尔甚至都不知道物理学家们究竟看到了什么,当项目组两位明显睡眠不足的负责人法比奥拉·吉诺蒂(Fabiola Gianotti)和乔伊·英卡代拉(Joe Incandela)简短地告诉他,那个如建筑物般大小的粒子探测器发现了什么时,这一消息实在是太令人振奋了.经过数月的数据收集,两项实验结果都强烈显示,LHC内产生的是一种新的粒子——正是由50年前理论物理学家彼得·希格斯(Peter Higgs)所预测的粒子.  相似文献   

4.
一场碰撞的开始? 2008年夏天,物理学家们聚集在位于瑞士日内瓦郊外的欧洲核子研究中心(CERN),希望完工不久的超级粒子对撞机--大型强子对撞机(LHC)能够发现新的粒子,进而解决一些现有的难题.  相似文献   

5.
王贻芳  阮曼奇 《自然杂志》2017,39(6):391-400
首先对粒子物理的基本目标、实验方法、研究现状以及粒子标准模型进行了简要介绍。解释了为何寻求超出标准模型的物理信号是现阶段物理学研究的核心任务。接着着重介绍了首个在粒子物理实验中被证实的超出标准模型的实验信号、中微子振荡及其实验测量,以及通向新物理原理的探针——希格斯(Higgs)玻色子。最后,介绍了高能物理实验设施,特别是现有的北京正负电子对撞机项目和未来的环形正负电子对撞机项目。对于后者,除了明晰其突出的物理学意义和物理学性能,还阐述了其对科学技术的促进作用。  相似文献   

6.
正对于迫不及待想要探索新疆域的粒子物理学家来说,发现希格斯玻色子已经变成一种甜蜜中带着苦涩的成功。2012年,全球最大的原子对撞机——大型强子对撞机(LargeHadronCollider,LHC)探测到希格斯玻色子。这种人类长久以来苦苦寻找的粒子填补了基本粒子和基本力标准模型的最后一个缺口。但是从那时起,标准模型已经成功通过每一次测试,没有产生对物理新发现的一丁点暗示。现在,希格斯玻色子本身也许提  相似文献   

7.
沈葹 《世界科学》2012,(8):16-17
且惊且喜:LHC首战告捷众所周知,当今国际物理学界的头等新闻乃是,欧洲核子研究中心(CERN)宣布:大型强子对撞机(LHC)的探测器发现了疑似的希格斯(玻色)粒子,其质量为125.3(±0.6)GeV,接近预测质量范围的下限值。LHC继另外两台大型高能粒子加速器LEP和  相似文献   

8.
位于欧洲核子中心(CERN)的大型强子对撞机(LHC)将引领人类去探索万亿能标(terascale)的世界.几经周折,现在这台庞大的环状机器即将运转,利用这台机器,人们期待发现什么呢?这是一个举世瞩目的问题.LHC原本是为了发现希格斯玻色子而建造的,它是标准粒子模型中最后一种尚未观测到的粒子.希格斯(P.Higgs)本人坚信会发现这种粒子.  相似文献   

9.
冯诗齐 《世界科学》2012,(1):19-19,21
●作为一种尚未被人知晓、然而却为其他粒子产生质量的希格斯玻色子,是完成并确认粒子物理标准模型所需的最后一个要素。希格斯玻色子将扩展标准模型希格斯玻色子的发现或将使标准模型更为完整。让我们暂且同意,大型强子对撞机(LHC)的探测器ATLAS以及紧凑型μ介子螺线管已经发现了一个质量约125千兆电子伏特(GeV)的希格斯玻色子。虽然  相似文献   

10.
提出并设计了一种新型的低温两相中微子探测器, 它利用电子泡在液氦池中特殊的传输特性, 实时、高效地测量了来自太阳质子-质子反应产生的低能量中微子. 该电子泡探测器的工作原理类似于时间投影室, 当入射中微子进入到探测介质液氦池中后, 与氦原子发生作用, 会激发弹性散射电子, 通过测量这些散射电子的能量及轨迹并与放射性背景信号分开, 就可以反推出入射中微子的能量和其他性质. 由于散射电子的信号很弱, 因此使用位于液面上方饱和蒸汽区的气体电子倍增器放大电子信号. 这种技术的突出优点是具有极高的空间分辨率和很好地抑制电离信号反馈的功能. 基于气体电子倍增器读取电信号和高精度CCD相机以进行探测光信号的新型时间投影室的研究, 目的是建造一个三维的空间分辨率为几个毫米量级的大型液氦低温探测器, 以探测能量低至100~200 keV的太阳中微子.  相似文献   

11.
《世界科学》2014,(12):F0004-F0004
<正>意大利粒子物理学家、欧洲核子中心(CERN)大型强子对撞机(LHC)ATLAS探测器实验主管法比奥拉·吉亚诺蒂(Fabiola Gianotti),两年前曾吸引了全世界的目光,2012年7月4日,当时她作为ATLAS团队发言人与CMS探测器代表在CERN宣布,他们分别发现了科学家一直在努力寻找的希格斯玻色子。  相似文献   

12.
刘忠范 《科学通报》2022,(22):2576-2577
<正>传统的图像识别系统由分立的光电探测器和计算机处理系统组成,由光电探测器先探测目标光信号,然后将探测到的光信号转换成电信号,再传输到计算机系统进行处理以达到识别的目的[1~3].但是光电探测器在探测目标图像的同时会产生大量冗余信息,  相似文献   

13.
为了揭示物质的本源,由欧洲核子中心(CERN)2000名科学家和工程师组成的CMS与AT-LAS探测器小组展开了角逐,争相探寻希格斯粒子的踪迹,目标直指诺贝尔奖——离瑞士日内瓦湖西端不远的罗讷河平原的地底下,工作人员正在为超级粒子对撞机——大型强子对撞机(LHC)作最后的组装工作。LHC是欧洲核子中心(CERN)负责修建和运作,由60多个国家的科学家齐心合力,费时20多年,斥资80亿美元打造出来的,将有望成为开启宇宙秘密之门的钥匙。  相似文献   

14.
近年来,科学家们已经展开了对粒子物理、天体物理和宇宙学交叉领域的探索,包括潜伏在山洞中探测致星系成团的暗物质粒子;把探测器置于南极冰面和地中海下探测来自外层空间的中微子;建造γ射线望远镜以便打开宇宙的新视角;追踪超新星爆发以解读促使宇宙加速膨胀的暗能量.  相似文献   

15.
邢志忠 《科学通报》2021,66(33):4207-4211
<正>粒子物理学的标准模型建立于20世纪60~70年代,它在随后的半个多世纪经受住了无数次科学实验的检验,成为人类描述与理解各种强、弱和电磁相互作用现象最成功的理论工具.但是该模型也存在一些缺陷,比如它刻意回避了中微子质量及其起源的问题,也无法解答为什么可观测宇宙中不存在原初反物质但却存在大量暗物质的问题.在宇宙大爆炸之初所产生的反物质何以随着宇宙的膨胀和冷却而神秘地消失,以及其背后的动力学是否与中微子的质量起源机制存在某种关联,这是当今粒子物理学和宇宙学界普遍关心并深入探索的重大课题.理论研究表明,解释中微子质量起源之谜的"跷跷板"(seesaw)机制[1]与解释宇宙原初反物质消失之谜的轻子生成(leptogenesis)机制[2]可能是问题背后的答案.而连接这两个机制的桥梁就是超重的"惰性"马约拉纳(Majorana)中微子[3]:它们在宇宙早期神秘地产生,与已知的"活性"中微子通过极其微弱的汤川(Yukawa)相互作用建立关联;它们的衰变则导致了宇宙的轻子与反轻子不对称,后者部分转化成宇宙的重子与反重子...  相似文献   

16.
现代物理实验离不开研究手段。研究基本粒子离不开粒子加速器。世界上最大的粒子加速器——莱泼正负电子对撞机在日内瓦建造以来,已于去年8月成功地实现了正负电子对撞,并产生了许多Z~0粒子。《莱泼实验进展》一文对此作了介绍,对当代科学前沿感兴趣的读者,当不会放过此文的。  相似文献   

17.
中微子振荡实验显示中微子有质量,而有质量的中微子基本性质的研究是当前粒子物理学的前沿热点.本文简要介绍反粒子的概念、马约拉纳费米子以及实验上如何检验中微子是否是其自身的反粒子.这个重要问题的答案将帮助我们探寻中微子质量的起源和超出粒子物理学标准模型的新物理.  相似文献   

18.
中微子在基本粒子家族中素有鬼魂粒子之称.它静止质量等于零,不带电荷,以光速运动,几乎不与任何物质发生相互作用.虽然它与质子、光子、电子并列为稳态粒子,但要直接探测它是不可能的. 1956年美国物理学家科温(L.Cowan)和雷恩(F.Reine)在新墨西哥州利用一台早年研制原子弹后废弃不用的反应堆作为反中微子源(中子衰变后产生,即n→p~ e~- (?)),估计每秒可产生10~(18)个(?)(反中微子),通过常年记录(?) p→n e~ , e~ e~-→rr反应中产生的光子辐射证实了确有(?)存在.自此以后,中微子探测,特别是太阳中微子和宇宙中微子探测便一直研究不断.近年来,随着高能天体物理研究的进展,人们并始酝酿打开中微子的天文观察窗口.因为,中微子不象光子,它不受磁场影响,也不会被散布在空间的宇宙尘埃及星光所散射,能穿透致密星体,因此,它可能带来远古宇宙纪元的信息,是理想的宇宙信使.(据估计,10~(14)eV光子一光子散射的结果,距离达10~7  相似文献   

19.
<正>新年之际,《自然》杂志对2015年科学动向进行了展望,粒子加速器、气候协议、终结埃博拉、矮行星等十个项目榜上有名。粒子加速器漫长的等待已经结束:停工两年之后,大型强子对撞机(LHC)将于2015年3月重新启动。该对撞机位于瑞士日内瓦欧洲核子研究委员会粒子物理实验室,此次启动它将以13万亿电子伏的能量进行撞击,而这几乎是现有纪录的两倍。科学家们希望额外的火力能够帮助对撞机发现新的现象,以填  相似文献   

20.
最近,各国物理学家在莫斯科附近的杜布纳召开了"物理学和大型强子对撞机探测器"国际学术会议,这次会议是各国物理学家试图展望21世纪的大会。再过10年,世界上最大的加速带电粒子设备——大型强子对撞机(LHC)将在日内瓦投入试用,它位于瑞士和法国边界全长27千米的地下隧道中。物理学家们希望,在今天难以想象的高能(10~(13)电子伏特)粒子碰撞时,将可以最终得到目前所未知  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号