共查询到20条相似文献,搜索用时 15 毫秒
1.
传统的模糊决策树虽然可以从模糊数据中抽取模糊分类规则,但只能获取节点的隶属度信息,无法得出样本数据对于节点的非隶属度和犹豫度信息,导致数据分类的准确率不高。针对此,基于毕达哥拉斯模糊集理论,提出了一种新的加权毕达哥拉斯模糊决策树算法(Weighted Pythagorean Fuzzy Decision Tree,WPFDT)。首先,通过改进的K-means聚类算法得到连续属性数据的聚类中心,并结合三角模糊数对连续数据进行模糊处理;其次,定义并计算每一个属性的加权毕达哥拉斯模糊熵,选择加权毕达哥拉斯模糊熵最小的属性作为决策树根节点,在根节点下递归选择模糊熵最小的属性作为分裂节点,同时通过阈值控制树的规模,得到从根节点到叶子节点路径的模糊规则以及模糊规则的隶属度、非隶属度以及犹豫度,并完成预测分类,直至生成WPFDT模型;最后,选取UCI上的3个医学数据集(Haberman、Breast Cancer、Parkinson)进行实验,在分类准确率和得出模糊规则的数量与3种传统决策树算法(模糊ID3算法、C4.5算法、CART算法)比较,实验结果表明:WPFDT在分类精度和树大小上都优于其他传统决策树算法,并且有较高的召回率和精确率。 相似文献
2.
罗秋瑾 《云南民族大学学报(自然科学版)》2019,(3):285-288
在处理不确定问题中,生成模糊决策树是一种常用的方法.其算法主要包含2个步骤,一个是树的生成条件,主要是确定扩展属性的选择标准,并以此为核心得到生成模糊决策树的启发式算法.另一个则是树的终止条件,否则会造成树的过度拟合的情况.目前,典型的算法中通常利用粗糙模糊依赖度作为选择扩展属性的依据,但是这个依赖函数不具备单调性,从而导致算法有不收敛的可能,基于这个问题,给出了模糊度的定义,重新定义了模糊依赖度和模糊粗糙度,选择模糊依赖度最大的条件属性作为根结点;然后,使用模糊粗糙度作为叶子结点的终止条件;最后,通过实例说明了整个模糊决策树的归纳过程. 相似文献
3.
模糊层次分析法 总被引:28,自引:0,他引:28
唐有文 《青海师范大学学报(自然科学版)》2002,(3):19-23
本文用模糊集对层次分析法进行了改进,从而使这种很有用的方法变得简单易学,便于应用。 相似文献
4.
5.
模糊决策树归纳算法及应用 总被引:3,自引:0,他引:3
使用分类信息熵极小化启发式,对分类问题中属性值为模糊集时,提出了直接用隶属度作为连续值变元来产生决策树的算法,将该算法应用于大型旋转机械振动故障诊断的规则提取上,经实践检验,所提学习算法合理。 相似文献
6.
基于决策树和遗传算法的模糊分类系统设计 总被引:1,自引:0,他引:1
提出一种基于决策树初始化和遗传算法优化的模糊分类系统的设计方法.该方法首先采用分类和递归树(CART)算法进行决策树的生长,树的修剪过程简化了初始决策树;然后,把修剪后的决策树转化为模糊模型,利用匹茨堡型实数编码的遗传算法优化该模糊模型.为了提高模型的解释性,在遗传算法中利用基于相似性的模型简化方法对模型进行约简.最后利用该方法对Iris问题进行研究,仿真结果验证了该方法的有效性. 相似文献
7.
《西北民族学院学报》2020,(2):20-30
流数据是一种有别于传统静态数据的新的数据形态,随着时间的推移而不断产生,而且富含变化.流数据分类是数据挖掘的研究分支,用于发现数据中隐含的模式并实现数据的类别划分,通常将每一个类别称作概念.将传统决策树算法引入流数据分类,针对流数据的特征提出特定的分类算法,是流数据分类的一个主要研究分支.为了全面介绍基于决策树的流数据分类算法,首先,简要概述数据挖掘及主要任务、决策树及其主要算法、流数据及其主要特性;然后,按照算法是否考虑概念漂移问题,将现有工作划分为包含概念漂移的流数据分类算法和不含概念漂移的流数据分类算法两大类,分别介绍每一类算法的主要算法流程、优缺点和典型应用;最后,指出基于决策树的流数据分类的进一步研究方向. 相似文献
8.
一种新的模糊决策树模型及其应用 总被引:1,自引:0,他引:1
模糊决策树是决策树在模糊环境下的一种推广,虽然其表示形式更符合人类的思维,但在构造时会增加预处理的工作量和创建树时的开销。基于这种情况,提出了一种混合算法,算法保留了较少属性值的Shannon熵,计算多属性和连续属性值模糊化后的模糊熵。将该算法应用于滑坡数据的挖掘中,得到了更易于理解的决策树和有效的规则,与传统算法的性能比较也证明了该算法的有效性。 相似文献
9.
10.
分类是数据挖掘中重要的研究课题.决策树方法是一种常用的分类算法,所建立的树型结构模型很直观,易于理解.传统的分类方法在处理海量数据时会出现性能下降或精度降低的问题,经过改进的ID3算法,基于SPRINT,消除了内存的限制,运算速度快,具有可伸缩性,性能较好. 相似文献
11.
在AFS(axiomatic fuzzy set)理论框架下,提出了一种基于模糊概念相似性与模糊熵度量的分类算法.模糊分类规则的前件通过概念聚合得到,一种基于模糊概念相似性与模糊熵度量的概念选择函数指导聚合过程;然后,利用剪枝算法对得到的模糊规则集进行剪枝,得到最终的分类规则集.用8组来自UCI数据库的数据集作为实验数据对算法进行验证,并与7种经典分类方法进行比较.实验结果表明该算法能得到较高的分类精度,分类结果明显优于参照的分类方法. 相似文献
12.
单实例多标签分类是指一个样本拥有多个标签的分类问题,对此提出了一种基于半模糊核聚类和模糊支持向量机的多标签分类算法.该算法采用一对一分解策略将多类多标签数据集分解为多个两类双标签数据子集,在每个子集上训练两类双标签模糊支持向量机.为提高分类器的性能引入了半模糊核聚类技术.实验结果表明,与现有的一些算法相比新算法具有其优... 相似文献
13.
中医药领域不完整的数据普遍存在,而数据的不完整很大程度地降低分类模型的学习效果。大多数已有的处理不完整数据的分类算法只关注在其学习阶段处理不完整数据,而对于不完整数据出现在分类阶段则不能处理或效果不好。文章提出一种新的分类算法用于处理不完整数据的分类问题。首先给出一个新的用于处理不完整数据的决策树算法,并针对传统的Boosting算法在迭代过程中使用确定性决策方法而没有充分考虑到数据集中的不完整数据,进一步提出改进的Boosting算法,在迭代过程中对每一个假设使用模糊决策方法,权重的更新机制是增加错误分类样本的权重和减少正确分类样本的权重,最终使用加权投票的方式得出最优的分类结果。最后,通过两组实验证明提出的算法策略在处理不完整数据问题时的优越性。 相似文献
14.
基于粗糙集理论的决策树构造算法 总被引:3,自引:0,他引:3
应用粗糙集理论,提出了一种利用新的启发式函数构造决策树的方法。该方法以属性重要性评价指标作为信息熵函数,对务件属性进行选择,充分考虑了属性间的依赖性和冗余性,弥补了ID3算法对属性间依赖性强调不够的缺点,解决了决策树中子树的重复和有些属性在同一决策树上被多次选择的问题,该方法还能对不相容决策表进行正确分类。实例表明该方法是正确有效的,而且明显优于传统的决策树构造方法。 相似文献
15.
决策树算法在医学图像数据挖掘中的应用 总被引:8,自引:1,他引:8
目的研究决策树算法在医学图像数据挖掘中的应用。方法利用决策树算法对乳腺癌图像数据进行分类,提出了一个基于决策树算法的医学图像分类器。结果实现了ID3和C4.5算法对图像数据的分类,获得了分类的实验结果。结论该模型系统达到了较高的分类准确率,证明数据挖掘在辅助医疗诊断中有着广泛的应用前景。 相似文献
16.
基于网络包分类算法在时间和空间复杂度上的限制,启发式策略一般具有较快的速度,同时在应用上具有较好的前景,提出了一种基于统计决策树的启发式包分类算法.该算法把规则头部中的每一位看作一个特征属性,因为不同位有不同的区分效果,根据对规则的统计把最具有区分意义的几位提取出来作为决策树的决策属性,使规则在子集中分布比较均匀,在子集中也做同样的处理,递归形成树形的数据结构;匹配时在树的每一层根据区分位判断其所属的子集,直到找到相匹配的规则.算法测试表明能实现高效的分类. 相似文献
17.
本文论述了决策树分类挖掘系统中的ID3算法和C45算法的建立思想,并将其应用到优化图书馆数据统计中,实践证明了该方法的可行性。 相似文献
18.
19.
提出了一种基于模糊化决策树的自适应分类算法.介绍基于决策树的分类算法,指出训练样本分布不均匀或树剪枝操作都可能引起分类规则的不完全,导致分类出现"盲区".引入决策树的模糊化方法及分支(规则)激活度的概念,给出一种新的自适应分类算法.并用实例分析表明,该算法不仅解决了分类规则不完全的问题,而且也提高了决策树分类的精度及分类结果的可解释性. 相似文献
20.