首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Wolbachia is a common maternally inherited bacterial symbiont able to induce crossing sterilities known as cytoplasmic incompatibility (CI) in insects. Wolbachia-modified sperm are unable to complete fertilization of uninfected ova, but a rescue function allows infected eggs to develop normally. By providing a reproductive advantage to infected females, Wolbachia can rapidly invade uninfected populations, and this could provide a mechanism for driving transgenes through pest populations. CI can also occur between Wolbachia-infected populations and is usually associated with the presence of different Wolbachia strains. In the Culex pipiens mosquito group (including the filariasis vector C. quinquefasciatus) a very unusual degree of complexity of Wolbachia-induced crossing-types has been reported, with partial or complete CI that can be unidirectional or bidirectional, yet no Wolbachia strain variation was found. Here we show variation between incompatible Culex strains in two Wolbachia ankyrin repeat-encoding genes associated with a prophage region, one of which is sex-specifically expressed in some strains, and also a direct effect of the host nuclear genome on CI rescue.  相似文献   

2.
J A Breeuwer  J H Werren 《Nature》1990,346(6284):558-560
Microorganisms have been implicated in causing cytoplasmic incompatibility in a variety of insect species, including mosquitoes, fruitflies, beetles and wasps. The effect is typically unidirectional: incompatible crosses produce no progeny or sterile males, whereas the reciprocal crosses produce normal progeny. The parasitic wasp Nasonia vitripennis is one of the few species in which the cytogenetic mechanism of incompatibility is known. In this species the paternal chromosome set forms a tangled mass in a fertilized egg and is eventually lost. Here we report that cytoplasmic microorganisms are associated with complete bidirectional incompatibility between N. vitripennis and a closely related sympatric species, N. giraulti. Microorganisms can be seen in the eggs of both species. Hybrid offspring are normally not produced in crosses between the two species, but do occur after elimination of the microorganisms by antibiotic treatment. A cytogenetic and genetic study shows that bidirectional interspecific incompatibility is due to improper condensation of the paternal chromosomes. Microorganism-mediated reproductive isolation is of interest because it could provide a rapid mode of speciation. The mechanism of incompatibility in Nasonia is also of interest as a potential tool for studying chromosome imprinting and chromosome condensation.  相似文献   

3.
灰飞虱Wolbachia群体生物学的遗传特性研究   总被引:6,自引:0,他引:6  
Wolbachia是存在于多种昆虫生殖器官的一类共生菌,它可能在宿 主群体中引起细菌质不亲和性而给宿 主带来生殖优势。对灰飞虱体内的Wolbachiafjtfdgpw,v gm pgcfmw qnnkudyjr do nui  相似文献   

4.
Presgraves DC  Balagopalan L  Abmayr SM  Orr HA 《Nature》2003,423(6941):715-719
Speciation--the splitting of one species into two--occurs by the evolution of any of several forms of reproductive isolation between taxa, including the intrinsic sterility and inviability of hybrids. Abundant evidence shows that these hybrid fitness problems are caused by incompatible interactions between loci: new alleles that become established in one species are sometimes functionally incompatible with alleles at interacting loci from another species. However, almost nothing is known about the genes involved in such hybrid incompatibilities or the evolutionary forces that drive their divergence. Here we identify a gene that causes epistatic inviability in hybrids between two fruitfly species, Drosophila melanogaster and D. simulans. Our population genetic analysis reveals that this gene--which encodes a nuclear pore protein--evolved by positive natural selection in both species' lineages. These results show that a lethal hybrid incompatibility has evolved as a by-product of adaptive protein evolution.  相似文献   

5.
Dettman JR  Sirjusingh C  Kohn LM  Anderson JB 《Nature》2007,447(7144):585-588
Establishing the conditions that promote the evolution of reproductive isolation and speciation has long been a goal in evolutionary biology. In ecological speciation, reproductive isolation between populations evolves as a by-product of divergent selection and the resulting environment-specific adaptations. The leading genetic model of reproductive isolation predicts that hybrid inferiority is caused by antagonistic epistasis between incompatible alleles at interacting loci. The fundamental link between divergent adaptation and reproductive isolation through genetic incompatibilities has been predicted, but has not been directly demonstrated experimentally. Here we empirically tested key predictions of speciation theory by evolving the initial stages of speciation in experimental populations of the yeast Saccharomyces cerevisiae. After replicate populations adapted to two divergent environments, we consistently observed the evolution of two forms of postzygotic isolation in hybrids: reduced rate of mitotic reproduction and reduced efficiency of meiotic reproduction. This divergent selection resulted in greater reproductive isolation than parallel selection, as predicted by the ecological speciation theory. Our experimental system allowed controlled comparison of the relative importance of ecological and genetic isolation, and we demonstrated that hybrid inferiority can be ecological and/or genetic in basis. Overall, our results show that adaptation to divergent environments promotes the evolution of reproductive isolation through antagonistic epistasis, providing evidence of a plausible common avenue to speciation and adaptive radiation in nature.  相似文献   

6.
The biological species concept defines species in terms of interbreeding. Interbreeding between spe-cies is prevented by reproductive isolation mechanisms. Based on our results of interspecific hybridi-zation between Helicoverpa armigera and Helicoverpa assulta, reproductive isolation mechanisms of the two species are analyzed. A combination of prezygotic factors (absent sex attraction and physical incompatibility of the genitalia) and postzygotic factors (female absence and partial sterility in F1 hy-brids) causes reproductive isolation of the two species. In addition, the role of interspecific hybridiza-tion in speciation is discussed.  相似文献   

7.
P Hutter  M Ashburner 《Nature》1987,327(6120):331-333
Post-mating mechanisms are central to the establishment of reproductive isolation between different, but closely related, species. Post-mating isolation mechanisms include hybrid breakdown, hybrid sterility and hybrid lethality and may, in some cases, be reinforced by pre-mating mechanisms such as ethological differentiation. In the Drosophila melanogaster species sub-group post-mating reproductive isolation is ensured by both the inviability and the sterility of hybrids. For example when D. melanogaster females are crossed to D. simulans males the hybrid progeny are normally all female; the hybrid males die as third instar larvae. The viable hybrid females are totally sterile. Little is known of the genetic basis for either hybrid sterility or hybrid inviability, although Coyne and others have begun a genetic analysis of the sterility of hybrids within this species sub-group. We have discovered a single gene difference that rescues the otherwise inviable male hybrids from the cross between D. melanogaster females and males of its three closest relatives. The study of this locus may shed light on the genetic control of both speciation and development.  相似文献   

8.
Speciation is generally regarded to result from the splitting of a single lineage. An alternative is hybrid speciation, considered to be extremely rare, in which two distinct lineages contribute genes to a daughter species. Here we show that a hybrid trait in an animal species can directly cause reproductive isolation. The butterfly species Heliconius heurippa is known to have an intermediate morphology and a hybrid genome, and we have recreated its intermediate wing colour and pattern through laboratory crosses between H. melpomene, H. cydno and their F1 hybrids. We then used mate preference experiments to show that the phenotype of H. heurippa reproductively isolates it from both parental species. There is strong assortative mating between all three species, and in H. heurippa the wing pattern and colour elements derived from H. melpomene and H. cydno are both critical for mate recognition by males.  相似文献   

9.
S L O'Neill  T L Karr 《Nature》1990,348(6297):178-180
Cytoplasmic incompatibility (CI) describes the phenomenon whereby eggs fertilized by sperm from insects infected with a rickettsial endosymbiont fail to hatch. Unidirectional CI between conspecific populations of insects is a well documented phenomenon. Bidirectional CI has, however, only been described in mosquito populations, and recently between closely related species of parasitic wasps, where it is of interest as both an unusual form of reproductive isolation and as a potential means of insect population suppression. Here we report on the first known example of bidirectional CI between conspecific populations of Drosophila simulans. Further, we show that defects as early as the first cleavage division are associated with CI. This observation suggests that the cellular basis of CI involves disruption of processes before or during zygote formation and that CI arises from defects in the structure and/or function of the sperm during fertilization.  相似文献   

10.
Wolbachia are a group of Rickettsia-like bacteria which parasitize the cells of a wide range of anthropoid. These microorganisms are associated with the reproductive and developmental abnormalities io their hosts. To study the molecular mechanism underlying such phenomena, we analyzed the genomic difference between Wolbachia with different cytoplasmic incompatibility (CI) phenotype using representational difference analysis method. A potential transposable element, which exists in the strong CI-inducing strain wRi, was isolated. This element was designated as Wolbachia insertion sequence element (WISE).  相似文献   

11.
杜鹃花繁殖生物学研究进展   总被引:1,自引:0,他引:1  
对杜鹃花孢粉学、繁育系统及传粉生物学方面的研究进展进行了分析,提出杜鹃花属植物繁殖生物学未来的研究可以主要从以下几个方面开展:(1)探讨杜鹃花属孢粉学线形结构的花粉呈现的进化意义;(2)在中国喜马拉雅地区,研究不同地点的相同物种和不同物种繁育系统,分析杜鹃花繁育系统多样性的相关因子,了解传粉系统及传粉昆虫的多样性,揭示杜鹃花属的传粉者特点;(3)选取合适的基因片段,重建杜鹃花属的系统,通过系统树找出可能是杂交起源的种类,纠正经典分类学在杜鹃花属系统位置构建方面的偏差;(4)对比不同杂交群体的繁殖生物学特性,找出传粉昆虫对不同亲本和杂交个体施加选择压力的差别,明确在物种的杂交形成过程中传粉昆虫对生殖隔离的选择作用。  相似文献   

12.
Dengue fever is the most important mosquito-borne viral disease of humans with more than 50 million cases estimated annually in more than 100 countries. Disturbingly, the geographic range of dengue is currently expanding and the severity of outbreaks is increasing. Control options for dengue are very limited and currently focus on reducing population abundance of the major mosquito vector, Aedes aegypti. These strategies are failing to reduce dengue incidence in tropical communities and there is an urgent need for effective alternatives. It has been proposed that endosymbiotic bacterial Wolbachia infections of insects might be used in novel strategies for dengue control. For example, the wMelPop-CLA Wolbachia strain reduces the lifespan of adult A. aegypti mosquitoes in stably transinfected lines. This life-shortening phenotype was predicted to reduce the potential for dengue transmission. The recent discovery that several Wolbachia infections, including wMelPop-CLA, can also directly influence the susceptibility of insects to infection with a range of insect and human pathogens has markedly changed the potential for Wolbachia infections to control human diseases. Here we describe the successful transinfection of A. aegypti with the avirulent wMel strain of Wolbachia, which induces the reproductive phenotype cytoplasmic incompatibility with minimal apparent fitness costs and high maternal transmission, providing optimal phenotypic effects for invasion. Under semi-field conditions, the wMel strain increased from an initial starting frequency of 0.65 to near fixation within a few generations, invading A. aegypti populations at an accelerated rate relative to trials with the wMelPop-CLA strain. We also show that wMel and wMelPop-CLA strains block transmission of dengue serotype 2 (DENV-2) in A. aegypti, forming the basis of a practical approach to dengue suppression.  相似文献   

13.
灰飞虱共生菌Wolbachia引起的细胞质不亲和性   总被引:14,自引:3,他引:11  
对我国6个地区和日本3个地区灰飞虱的Wolbahia感染率,用PCR技术进行了检测,结果表明中国的辽宁、北京、上海和云南的灰飞虱的Wolbachia感染率均接近100%;四川为59.6%;而宁夏为0。各地区灰飞虱间的交配实验证明了在Wolbachia引起的细胞质不亲和现象的存在,Wolbachia16SrDNA的部分测序分析表明,上海、云南和日本出云的灰飞虱发的同为Wolbachia pipien  相似文献   

14.
The reinforcement model of evolution argues that natural selection enhances pre-zygotic isolation between divergent populations or species by selecting against unfit hybrids or costly interspecific matings. Reinforcement is distinguished from other models that consider the formation of reproductive isolation to be a by-product of divergent evolution. Although theory has shown that reinforcement is a possible mechanism that can lead to speciation, empirical evidence has been sufficiently scarce to raise doubts about the importance of reinforcement in nature. Agrodiaetus butterflies (Lepidoptera: Lycaenidae) exhibit unusual variability in chromosome number. Whereas their genitalia and other morphological characteristics are largely uniform, different species vary considerably in male wing colour, and provide a model system to study the role of reinforcement in speciation. Using comparative phylogenetic methods, we show that the sympatric distribution of 15 relatively young sister taxa of Agrodiaetus strongly correlates with differences in male wing colour, and that this pattern is most likely the result of reinforcement. We find little evidence supporting sympatric speciation: rather, in Agrodiaetus, karyotypic changes accumulate gradually in allopatry, prompting reinforcement when karyotypically divergent races come into contact.  相似文献   

15.
Wolbachia is an obligatory, maternally inherited intracellular bacterium, known to infect a wide range of arthropods. It has been implicated in causing cytoplasmic incompatibility (CI), parthenogenesis, the feminization of genetic males and male-killing in different hosts. However, the molecular mechanisms by which this fastidious bacterium causes these reproductive abnormalities have not yet been determined. In this study, we report on the cloning and characterization of the gene encoding phage-related tail protein (PrTP) from Wolbachia in Drosophila melanogaster CantonS (wMelCS) and from Wolbachia in Drosophila melanogaster yw67c23 (wMel) by representational difference analysis (RDA) and ligation-mediated PCR (LM-PCR). The functionality of a bipartite nuclear localization signal sequence (NLS) of the gene was also successfully tested in Drosophila S2 cells. PrTP expression in various strains of Wolbachia was investigated. Our results suggest that PrTP may not induce CI directly. However, the existence of prtp provided direct evidence of phage-mediated horizontal gene transfer (HGT) that might play an important role in a variety of reproductive abnormalities of Wolbachia.  相似文献   

16.
Host-plant adaptation drives the parallel evolution of reproductive isolation   总被引:12,自引:0,他引:12  
Nosil P  Crespi BJ  Sandoval CP 《Nature》2002,417(6887):440-443
Parallel evolution of similar traits in independent populations that inhabit ecologically similar environments strongly implicates natural selection as the cause of evolution. Parallel speciation is a special form of parallel evolution where traits that determine reproductive isolation evolve repeatedly, in closely related populations, as by-products of adaptation to ecological conditions. The outcome of such parallel evolution is that ecologically divergent pairs of populations exhibit greater levels of reproductive isolation than ecologically similar pairs of populations of a similar or younger age. The parallel evolution of reproductive isolation provides strong evidence for natural selection in the process of speciation, but only one conclusive example from nature is known. Populations of the walking-stick insect Timema cristinae that use different host-plant species have diverged in body size and shape, host preference, behaviour and the relative frequency of two highly cryptic colour-pattern morphs. Here we report that divergent selection for host adaptation, and not genetic drift, has promoted the parallel evolution of sexual isolation in this species. Our findings represent a clear demonstration that host-plant adaptation can play a crucial and repeatable role in the early stages of speciation.  相似文献   

17.
Engineering evolution to study speciation in yeasts   总被引:11,自引:0,他引:11  
The Saccharomyces 'sensu stricto' yeasts are a group of species that will mate with one another, but interspecific pairings produce sterile hybrids. A retrospective analysis of their genomes revealed that translocations between the chromosomes of these species do not correlate with the group's sequence-based phylogeny (that is, translocations do not drive the process of speciation). However, that analysis was unable to infer what contribution such rearrangements make to reproductive isolation between these organisms. Here, we report experiments that take an interventionist, rather than a retrospective approach to studying speciation, by reconfiguring the Saccharomyces cerevisiae genome so that it is collinear with that of Saccharomyces mikatae. We demonstrate that this imposed genomic collinearity allows the generation of interspecific hybrids that produce a large proportion of spores that are viable, but extensively aneuploid. We obtained similar results in crosses between wild-type S. cerevisiae and the naturally collinear species Saccharomyces paradoxus, but not with non-collinear crosses. This controlled comparison of the effect of chromosomal translocation on species barriers suggests a mechanism for the generation of redundancy in the S. cerevisiae genome.  相似文献   

18.
Speciation through sensory drive in cichlid fish   总被引:1,自引:0,他引:1  
Theoretically, divergent selection on sensory systems can cause speciation through sensory drive. However, empirical evidence is rare and incomplete. Here we demonstrate sensory drive speciation within island populations of cichlid fish. We identify the ecological and molecular basis of divergent evolution in the cichlid visual system, demonstrate associated divergence in male colouration and female preferences, and show subsequent differentiation at neutral loci, indicating reproductive isolation. Evidence is replicated in several pairs of sympatric populations and species. Variation in the slope of the environmental gradients explains variation in the progress towards speciation: speciation occurs on all but the steepest gradients. This is the most complete demonstration so far of speciation through sensory drive without geographical isolation. Our results also provide a mechanistic explanation for the collapse of cichlid fish species diversity during the anthropogenic eutrophication of Lake Victoria.  相似文献   

19.
Speciation in animals is almost always envisioned as the split of an existing lineage into an ancestral and a derived species. An alternative speciation route is homoploid hybrid speciation in which two ancestral taxa give rise to a third, derived, species by hybridization without a change in chromosome number. Although theoretically possible it has been regarded as rare and hence of little importance in animals. On the basis of molecular and chromosomal evidence, hybridization is the best explanation for the origin of a handful of extant diploid bisexual animal taxa. Here we report the first case in which hybridization between two host-specific animals (tephritid fruitflies) is clearly associated with the shift to a new resource. Such a hybrid host shift presents an ecologically robust scenario for animal hybrid speciation because it offers a potential mechanism for reproductive isolation through differential adaptation to a new ecological niche. The necessary conditions for this mechanism of speciation are common in parasitic animals, which represent much of animal diversity. The frequency of homoploid hybrid speciation in animals may therefore be higher than previously assumed.  相似文献   

20.
Chromosomal evolution in Saccharomyces   总被引:10,自引:0,他引:10  
Fischer G  James SA  Roberts IN  Oliver SG  Louis EJ 《Nature》2000,405(6785):451-454
The chromosomal speciation model invokes chromosomal rearrangements as the primary cause of reproductive isolation. In a heterozygous carrier, chromosomes bearing reciprocal translocations mis-segregate at meiosis, resulting in reduced fertility or complete sterility. Thus, chromosomal rearrangements act as a post-zygotic isolating mechanism. Reproductive isolation in yeast is due to post-zygotic barriers, as many species mate successfully but the hybrids are sterile. Reciprocal translocations are thought to be the main form of large-scale rearrangement since the hypothesized duplication of the whole yeast genome 10(8) years ago. To test the chromosomal speciation model in yeast, we have characterized chromosomal translocations among the genomes of six closely related species in the Saccharomyces 'sensu stricto' complex. Here we show that rearrangements have occurred between closely related species, whereas more distant ones have colinear genomes. Thus, chromosomal rearrangements are not a prerequisite for speciation in yeast and the rate of formation of translocations is not constant. These rearrangements appear to result from ectopic recombination between Ty elements or other repeated sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号