首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
L Adorini  E Appella  G Doria  F Cardinaux  Z A Nagy 《Nature》1989,342(6251):800-803
T cells recognize foreign proteins as peptides bound to self molecules encoded by the major histocompatibility complex (MHC). The kinetics of interaction between purified class II MHC molecules and peptides is unusual, in that the rate of association is very slow, but once formed, the complexes are extremely stable. This raises the question of how the antigen-presenting cell provides a sufficient number of free MHC binding sites to ensure T cell immunity. We present results suggesting that an exchange of peptide in MHC binding sites may take place under physiological conditions.  相似文献   

2.
M Londei  J R Lamb  G F Bottazzo  M Feldmann 《Nature》1984,312(5995):639-641
The first step in the induction of immune responses, whether humoral or cell mediated, requires the interaction between antigen-presenting cells and T lymphocytes restricted at the major histocompatibility complex (MHC). These cells invariably express MHC class II molecules (HLA-D region in man and Ia in mouse) which are recognized by T cells of the helper/inducer subset in association with antigen fragments. Interestingly, in certain pathological conditions, for example in autoimmune diseases such as thyroiditis and diabetic insulitis, class II molecules may be expressed on epithelial cells that normally do not express them. We speculated that these cells may be able to present their surface autoantigens to T cells, and that this process may be crucial to the induction and maintenance of autoimmunity. A critical test of this hypothesis would be to determine whether epithelial cells bearing MHC class II molecules (class II+ cells) can present antigen to T cells. We report here that class II+ thyroid follicular epithelial cells (thyrocytes) can indeed present viral peptide antigens to cloned human T cells.  相似文献   

3.
Class I MHC molecules acquire peptides from endogenously synthesized proteins, whereas class II antigens present peptides derived from extracellular compartment molecules. This dichotomy is due to the fact that the invariant chain associates with class II molecules in the endoplasmic reticulum, preventing binding of endogenous peptides. The mutually exclusive binding of peptide and invariant chain to class II molecules suggests that the invariant chain might play a part in autoimmune disease.  相似文献   

4.
Class II major histocompatibility complex (MHC) molecules function as antigen-presenting elements as well as signal transducers on B lymphocytes. We previously reported that a B lymphoma cell transfectant, 5C2, expressing genetically engineered I-Ak molecules with truncated cytoplasmic domains was severely impaired in both antigen presentation and in anti-Ia-induced intracytoplasmic signalling. These two functions could be restored by preculturing 5C2 cells with cyclic AMP analogues. Here we demonstrate that impaired signal transduction by truncated class II molecules results in a deficiency in induction of the newly defined B-cell accessory molecule B7 (ref. 8), which can be reversed by restoration of B7 expression. These data imply that contact of the T-cell antigen receptor with MHC/antigen ligand results in signal transmission through the class II cytoplasmic domain. This signal, which can be mimicked by dibutyryl cAMP, induces expression of B7, resulting in effective antigen presentation. The fact that crosslinking of surface class II MHC also induces B7 expression on normal resting human B cells supports this contention.  相似文献   

5.
Traffic of MHC molecules dictates the source of peptides that are presented to T cells. The intracellular distribution of MHC class I and class II molecules reflects the dichotomy in presentation of antigen from endogenous and exogenous origin, respectively. In human B lymphoblastoid cells, class I molecules are present in compartments constituting the biosynthetic pathway, whereas class II molecules enter structures related to lysosomes during their biosynthesis.  相似文献   

6.
T Spies  M Bresnahan  S Bahram  D Arnold  G Blanck  E Mellins  D Pious  R DeMars 《Nature》1990,348(6303):744-747
Major histocompatibility complex (MHC) class I molecules export peptides to the cell surface for surveillance by cytotoxic T lymphocytes. Intracellular peptide binding is critical for the proper assembly and transport of class I molecules. This mechanism is impaired as a result of a non-functional peptide supply factor gene (PSF) in several human mutant cell lines with genomic lesions in the MHC. We have now identified PSF in the MHC class II region by deletion mapping in mutants and chromosome-walking. PSF is homologous to mammalian and bacterial ATP-dependent transport proteins, suggesting that it operates in the intracellular transport of peptides.  相似文献   

7.
M Peterson  J Miller 《Nature》1990,345(6271):172-174
Recent experiments have implicated intracellular events in the formation of the MHC class II-peptide complexes recognized by CD4-positive T cells. These data raise the possibility that the intracellular association of class II with the non-polymorphic glycoprotein, invariant chain (Ii), may regulate the interaction between processed antigen and MHC class II molecules. To address this possibility, we have generated a series of transfected fibroblast cell lines that express class II with and without Ii. Although the presence of Ii does not seem to affect the ability of the cells to process and present intact antigen, Ii-negative cells express an altered form of class II at the cell surface. This modified conformation of class II in Ii-negative cells is detectable by an increase in the ability to present antigenic peptides to T cells and a decrease in the binding of several class II-specific monoclonal antibodies.  相似文献   

8.
J L Maryanski  J P Abastado  P Kourilsky 《Nature》1987,330(6149):660-662
The class I molecules of the major histocompatibility complex (H-2 in mouse, HLA in man) are membrane proteins composed of a polymorphic heavy chain associated with beta-2-microglobulin. Recent studies suggest that class I molecules present peptides derived from processed antigens to the receptor of cytolytic T cells. In particular, in the H-2d haplotype, synthetic HLA peptides can be recognized on Kd-bearing target cells by Kd-restricted cytolytic T cells specific for HLA. Here we analyse the specificity of presentation of two HLA peptides by a set of chimaeric Kd/Dd molecules to four different cytolytic T-cell clones. We identify two distinct regions within the second external (alpha 2) domain of Kd that contribute to its specificity as a restriction element. Our results indicate that the binding of an immunogenic peptide by a class I molecule is not always sufficient for its recognition by the T-cell antigen receptor. This suggests that the major histocompatibility complex restriction element either interacts with the T-cell antigen receptor or induces the recognized conformation of the peptide.  相似文献   

9.
Intracellular transport of class II MHC molecules directed by invariant chain   总被引:23,自引:0,他引:23  
Three structural motifs in the invariant chain (li) control the intracellular transport of class II major histocompatibility complex molecules. An endoplasmic reticulum retention signal in the full-length li suggests a role for li in the alpha-beta heterodimer assembly. Another signal motif directs a truncated li, alone or associated with individual class II chains, to a degradation compartment by a pathway circumventing the Golgi. When this truncated li binds alpha-beta dimers, a third signal dominates, directing the complex by way of the Golgi to vesicles in the cell periphery, which may represent a subcompartment of recycling endosomes.  相似文献   

10.
Sequence analysis of peptides bound to MHC class II molecules.   总被引:38,自引:0,他引:38  
CD4 T cells recognize peptide fragments of foreign proteins bound to self class II molecules of the major histocompatibility complex (MHC). Naturally processed peptide fragments bound to MHC class II molecules are peptides of 13-17 amino acids which appear to be precessively truncated from the carboxy terminus, perhaps after binding to the MHC class II molecule. The finding of predominant self peptides has interesting implications for antigen processing and self-non-self discrimination.  相似文献   

11.
Antigens presented to CD4+ T cells derive primarily from exogenous proteins that are processed into peptides capable of binding to class II major histocompatibility complex (MHC) molecules in an endocytic compartment. In contrast, antigens presented to CD8+ T cells derive mostly from proteins processed in the cytosol, and peptide loading onto class I MHC molecules in an early exocytic compartment is dependent on a transporter for antigen presentation encoded in the class II MHC region. Endogenous cytosolic antigen can also be presented by class II molecules. Here we show that, unlike class I-restricted recognition of antigen, HLA-DR1-restricted recognition of cytosolic antigen occurs in mutant cells without a transporter for antigen presentation. In contrast, DR1-restricted recognition of a short cytosolic peptide is dependent on such a transporter. Thus helper T-cell epitopes can be generated from cytosolic antigens by several mechanisms, one of which is distinct from the classical class I pathway.  相似文献   

12.
Interaction between CD4 and class II MHC molecules mediates cell adhesion   总被引:89,自引:0,他引:89  
C Doyle  J L Strominger 《Nature》1987,330(6145):256-259
The CD4 glycoprotein is expressed on T-helper and cytotoxic lymphocytes which are restricted to class II major histocompatibility complex (MHC) antigens on target cells. Antibody inhibition studies imply that CD4 acts to increase the avidity of effector-target cell interactions. These observations have led to the speculation that CD4 binds to a monomorphic class II antigen determinant, thereby augmenting low affinity T-cell receptor-antigen interactions. However, no direct evidence has been presented indicating that CD4 and class II molecules interact. To address this issue, we have used a vector derived from simian virus 40 (SV40) to express a complementary DNA (cDNA) encoding the human CD4 glycoprotein. When CV1 cells expressing large amounts of the CD4 protein at the cell surface are incubated with human B cells bearing MHC-encoded class II molecules, they are bound tightly to the infected monolayer, whereas mutant B cells which lack class II molecules fail to bind. Furthermore, the binding reaction is specifically inhibited by anti-class II and anti-CD4 antibodies. Thus, the CD4 protein, even in the absence of T-cell receptor-antigen interactions, can interact directly with class II antigens to function as a cell surface adhesion molecule.  相似文献   

13.
14.
A Lanzavecchia  P A Reid  C Watts 《Nature》1992,357(6375):249-252
Functional, morphological and biochemical evidence indicates that class II major histocompatibility complex (MHC) molecules associate with processed peptides during biosynthesis. Peptide/MHC complexes in living cells have been reported to be less stable than similar complexes generated in vitro, which has led to the suggestion that there may be a peptide exchange mechanism operating in vivo. Although this could increase the capacity for binding incoming antigens, it would reduce the efficacy of processed antigenic peptides by exchanging these for self peptides. Here we measure the half-life of peptide/class II complexes in human antigen-presenting cells and find that it is very similar to the half-life of class II molecules themselves, indicating that peptides are bound irreversibly under physiological conditions. Thus class II MHC retains long-term 'memory' of past encounters with antigen to maximize the opportunity for T cell/antigen-presenting cell interaction.  相似文献   

15.
16.
The pathways of intracellular traffic involved in antigen processing and presentation have been defined by immunoelectron microscopy. The export pathway for class II histocompatibility molecules and the antigen import pathway meet in a peripheral endocytic compartment having all the molecular machinery believed to be required for antigen processing and presentation, including internalized surface immunoglobulins, proteolytic enzymes and invariant chains. This compartment defines a site where peptides from endocytosed antigen can bind class II molecules en route to the cell surface for presentation to T cells.  相似文献   

17.
T cells recognize foreign protein antigens in the form of peptide fragments bound tightly to the outer aspect of molecules encoded by the major histocompatibility complex (MHC). Most of the amino-acid differences that distinguish MHC allelic variants line the peptide-binding cleft, and different allelic forms of MHC molecules bind distinct peptides. It has been demonstrated that peptide-binding to MHC class I involves anchor residues in certain positions and that antigenic peptides associated with MHC class I exhibit allele-specific structural motifs. We have previously reported an analysis of MHC class II-associated peptide sequences. Here we extend this analysis and show that certain amino-acid residues occur at particular positions in the sequence of peptides binding to a given MHC class II molecule. These sequence motifs require the amino terminus to be shifted one or two positions to obtain alignment; such shifts occur naturally for a single peptide sequence without qualitatively altering CD4 T-cell recognition.  相似文献   

18.
G Carayanniotis  B H Barber 《Nature》1987,327(6117):59-61
The generation of strong serological responses to protein antigens in experimental animals usually requires the use of potent adjuvants, most of which cannot be used in human or veterinary vaccines because of deleterious side effects. Attempting to circumvent this problem, we have assessed an adjuvant-free antigen-delivery system based on the hypothesis that antigen coupled to monoclonal antibodies (mAbs) specific for class II major histocompatibility complex (MHC) determinants should be 'targeted' onto antigen-presenting cells, thus facilitating recognition by helper T cells. We found that the biotin-binding protein avidin could generate a serological response in mice, without adjuvant, when injected coupled to a biotinylated anti-class II MHC mAb. Equivalent amounts of avidin mixed with the non-biotinylated form of the same mAb failed to elicit a response. A targeting effect was demonstrated at low levels of injected conjugate because only mice bearing the appropriate class II antigens responded. Responses were also seen with a protein antigen other than avidin, offering a new, adjuvant-free approach to subunit vaccine construction.  相似文献   

19.
Assembly of class I major histocompatibility complex (MHC) molecules involves the interaction of two distinct polypeptides (the heavy and light chains) with peptide antigen. Cell lines synthesizing both chains but expressing low levels of MHC class I molecules on their surface as a result of a failure in assembly and transport have been identified. We now report that although the apparent steady-state distribution in these cells of class I molecules is in the endoplasmic reticulum (ER), the molecules in fact are recycled between the ER and Golgi, rather than retained in the ER. This explains the failure of class I molecules to negotiate the secretory pathway. Class I molecules do not seem to be modified by Golgi enzymes, suggesting that the proteins do not reach the Golgi apparatus during recycling. But morphological and subcellular fractionation evidence indicates that they pass through the cis Golgi or a Golgi-associated organelle, which we postulate to be the recycling organelle. This compartment, which we call the 'cis-Golgi network', would thereby be a sorting organelle that selects proteins for return to the ER.  相似文献   

20.
Class II and class I histocompatibility molecules allow T cells to recognize 'processed' polypeptide antigens. The two polypeptide chains of class II molecules, alpha and beta, are each composed of two domains (for review see ref. 6); the N-terminal domains of each, alpha 1 and beta 1, are highly polymorphic and appear responsible for binding peptides at what appears to be a single site and for being recognized by MHC-restricted antigen-specific T cells. Recently, the three-dimensional structure of the foreign antigen binding site of a class I histocompatibility antigen has been described. Because a crystal structure of a class II molecule is not available, we have sought evidence in class II molecules for the structural features observed in the class I binding site by comparing the patterns of conserved and polymorphic residues of twenty-six class I and fifty-four class II amino acid sequences. The hypothetical class II foreign-antigen binding site we present is consistent with mutation experiments and provides a structural framework for proposing peptide binding models to help understand recent peptide binding data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号