首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
极限学习机自编码器作为无监督降维方法,通过重构输入数据来提取原始样本特征,具有学习速度快、泛化性能高等优势.但经典极限学习机自编码器表示能力有限,使得重构输出和原始样本之间的残差不可避免.因此借鉴残差补偿思想,提出基于残差补偿的极限学习机自编码器,通过不断对重构残差补偿式学习来改善ELM-AE的表示能力.在6个公开数据集上进行K-means聚类实验,结果表明基于残差补偿的极限学习机自编码器(RCELM-AE)能够有效提高聚类准确率.  相似文献   

2.
针对当前无监督学习的入侵检测算法准确度低、误报率高以及有监督学习算法所需训练样本标记成本高的问题,提出一种基于对抗性自编码器的入侵检测算法.这是一种半监督学习算法,仅需要训练数据集中少量标记数据进行训练,并在训练数据集中支持未标记数据,从而提高性能.首先,自编码器通过提取重要特征作为潜在变量来降低输入数据的维数;其次,...  相似文献   

3.
随着互联网的普及和网络连接设备与访问方式的多样化,网络入侵方式与手段日趋多样化且变异速度快,传统入侵检测方法在有效性、自适应性和实时性方面难以应对日益复杂网络环境的安全监控要求,为此提出一种基于在线自适应极限学习机(online adaption extreme learning machine, OAELM)选择性学习的网络入侵检测方法(SEoOAELM-NID).首先,提出一种能自动设定最优隐含节点个数且具有在线增量学习功能的OAELM构建方法,采用Bagging策略快速训练出多个具有一定独立性的OAELM子学习器;然后,基于边缘距离最小化原则(margin distance minimization,MDM)对OAELM子学习器的集成增益进行计算;通过选择增益度高的部分OAELM进行选择性集成,获得泛化能力强、效率高的选择性集成学习器用于入侵检测.由于SEoOAELM-NID能自动设定ELM子学习器最优隐节点个数且能根据网络环境变化实现检测模型在线顺序更新,因而能有效适应各种复杂网络环境的入侵检测要求;选择部分最优的子学习器进行集成,保证了最终检测结果的准确性和实效性,同时利用在线数据不断更新检测器.在NSL-KDD数据集上的测试结果表明,相比基于单个学习器以及传统集成学习的网络入侵检测方法,SEoOAELM-NID无论对已知入侵类型还是未知入侵类型均能获得更高的检测率,且识别速度快.  相似文献   

4.
针对极限学习机在高维度、含噪声数据集中需要大量隐含层节点来保证分类性能的问题,设计了镜像极限学习机.该算法使用伪逆法确定输入权值,随机生成输出权值和偏置,在对数据进行分类时,它仅需极少的隐含层节点.为了提升镜像极限学习机的分类性能和抗噪性,将它与去噪自编码器相结合.利用去噪自编码器对输入数据进行特征提取,并将提取到的特征作为镜像极限学习机的输入数据,再进行网络训练.在无噪和含噪声的MNIST,Fashion MNIST,Rectangles和Convex数据集中,将基于去噪自编码器的镜像极限学习机与ELM,PCA-ELM,SAA-2和DAE-ELM作对比实验,结果表明,基于去噪自编码器的镜像极限学习机的综合性能最优,用于分类的网络隐含层节点数最少.  相似文献   

5.
针对极限学习机在高维度、含噪声数据集中需要大量隐含层节点来保证分类性能的问题,设计了镜像极限学习机.该算法使用伪逆法确定输入权值,随机生成输出权值和偏置,在对数据进行分类时,它仅需极少的隐含层节点.为了提升镜像极限学习机的分类性能和抗噪性,将它与去噪自编码器相结合.利用去噪自编码器对输入数据进行特征提取,并将提取到的特征作为镜像极限学习机的输入数据,再进行网络训练.在无噪和含噪声的MNIST,Fashion MNIST,Rectangles和Convex数据集中,将基于去噪自编码器的镜像极限学习机与ELM,PCA-ELM,SAA-2和DAE-ELM作对比实验,结果表明,基于去噪自编码器的镜像极限学习机的综合性能最优,用于分类的网络隐含层节点数最少.  相似文献   

6.
针对网络入侵检测准确率低、误报率高的状况,通过理论分析与仿真实验,提出一种利用粒子群优化的极限学习机入侵检测算法.该算法利用粒子群算法优化核极限学习机的核参数,采用学习能力和线性组合泛化能力强的全局性核函数,形成多核极限学习机,可以有效提高单核极限学习机分类器的性能.通过仿真实验对其性能进行了对比分析,结果验证了该算法的有效性.  相似文献   

7.
针对网络入侵检测准确率低、误报率高的问题,本文提出了一种基于粒子群优化和极限学习机的入侵检测算法。粒子群优化算法(PSO)是一种群智能算法,核极限学习机(KELM)是一种学习速度快、泛化能力强的经典核机器学习的方法,但是极限学习机对核函数及参数的选择直接影响它的分类性能。本文算法中利用粒子群算法优化核极限学习机的核参数,采用学习能力强且线性组合泛化能力强的全局性核函数,形成了多核极限学习机,可以有效提高单核极限学习机(ELM)分类器的性能。最后通过实验对算法性能做了对比分析,实验结果验证了本文算法的有效性。  相似文献   

8.
为有效提取复杂且冗余的网络流量数据特征并进行更好地特征表达,提出了一种基于自编码器和对比学习的入侵检测方法。通过自编码器可捕捉网络数据流量特征间的非线性相关性,实现对数据的降维处理和特征提取,同时,采用对比学习对网络流量数据进行表征学习,通过优化对比学习损失函数进行端到端学习。在两个基准数据集NSL-KDD和UNSW-NB15进行分类试验。结果表明,相对于其他深度学习的入侵检测方法,该模型有效地提高了识别准确率和精确率。  相似文献   

9.
基于HMM和自组织映射的网络入侵检测算法   总被引:1,自引:0,他引:1  
随着网络入侵多样化的发展,传统的防火墙、数据加密等防御方法已经很难保证系统和网络资源的安全,为此,设计了基于隐形马尔科夫模型HMM和自组织映射SOM的网络入侵检测方法.首先建立了自组织映射-HMM的双层入侵检测模型,采用样本数据训练SOM网,然后将测试数据输入SOM模型获得观察序列对应的攻击类别的后验概率,将此后验概率用于训练HMM模型获得概率初始分布和状态转移概率等各参数.最后,通过比较测试数据在各模型下发生概率的大小来获取对应的攻击类别.仿真实验表明本研究方法能有效实现网络入侵检测,较经典的HMM方法以及改进的神经网络方法,具有较高的检测率和较低的误报率,同时具有较少的检测时间.  相似文献   

10.
入侵检测系统是一种对网络进行安全保护的重要手段,提出了一种基于自组织映射网络的入侵检测算法,通过训练数据对自组织映射网络进行训练,得到一个用于进行入侵检测的网络安全检测算法.该网络安全检测算法通过建立3层自组织映射网络模型,设计了权值、邻域与学习率的更新方式,输出端的值则对应了网络输出各安全事件的发生概率.采用KDDCUP99进行仿真来对本算法进行验证,将具有最大概率的模型作为入侵检测结果.仿真实验表明,算法能有效实现网络入侵检测,具有较高的网络入侵检测率及较低的误检率和漏检率,同时与其他同类算法相比,对于各类网络攻击均具有更高的检测率.  相似文献   

11.
陶沙沙  郭顺生 《科学技术与工程》2020,20(29):12196-12203
针对原始振动数据无监督特征学习问题,提出了一种深度小波自动编码器(deep wavelet automatic encoder,DWAE)与鲁棒极限学习机(extreme learning machine,ELM)相结合的滚动轴承的智能故障诊断方法。首先,利用小波函数作为非线性激活函数设计小波自动编码器从而有效地捕获信号特征。其次,利用多个小波自动编码器构造一个深度小波自动编码器来增强无监督特征学习能力。最后,采用鲁棒极限学习机作为分类器,对不同的轴承故障进行分类识别。用该方法对实验所得的轴承振动信号进行对比分析,结果验证了该方法能够在原始振动数据无监督特征学习的条件下该方法优于传统方法和标准深度学习方法。  相似文献   

12.
目前极限学习机在训练模型时存在占用计算资源多和模型精度低等问题.为了解决上述问题,提出了一种基于状态转移算法的极限学习机,可提升算法计算效率和模型精度.利用状态转移算法的全局搜索特性求解线性方程组,得到极限学习机的输出权重矩阵,进而完成建模.在分类和回归数据集上与极限学习机和其他主流算法进行对比,所提方法可以利用较少的隐藏层节点得到高精度的模型,同时具有更好的学习准确率.这种高性能的建模方式弥补了极限学习机的不足.  相似文献   

13.
针对基于栈式自编码器的离群点(SAE)检测算法和基于密度的离群点(LOF)检测算法检测精度不高的问题,提出了将SAE算法和LOF算法相结合的SAE-LOF算法.该算法的核心是对单独的SAE算法和LOF算法加入"投票"思想,通过神经网络训练权重,计算SAE算法和LOF算法加权投票结果,进而检测离群点.首先,训练并测试SA...  相似文献   

14.
阐述了入侵检测技术的发展与现状,对目前所采用的入侵检测技术及其特点进行了分析比较,探讨了将神经网络应用于网络入侵检测的可行性.结合网络入侵和主机入侵方面的检测能力,构建了基于智能体的分布式入侵检测系统的体系结构模型.重点讨论了神经网络入侵检测算法,提出了较优的变速度回归神经网络检测算法.  相似文献   

15.
周丽华 《科技信息》2010,(24):I0188-I0188,I0183
以BM算法为基础,提出一种快速的字符串模式匹配方法,该算法在匹配的过程中采用新的坏字符规则比传统的BM算法跳过的距离更大,并且在前缀不匹配的极端情况下能减少匹配的次数。实验证明,该算法具有良好的性能。  相似文献   

16.
极限学习机(ELM)因其运算速度快、误差小等优点而得到广泛的应用,但由于随机给定输入权值和阈值可能导致隐含层节点无效,因此,ELM通常需要增加隐含层节点数来提高预测精度,从而导致网络泛化能力不佳。为了解决上述问题,提出一种和声搜索算法的极限学习机网络(HS-ELM),采用和声搜索算法不断调整ELM输入权值和隐含层阈值矩阵选取最优以达到优化网络的目的。最后通过两种复杂度不同的非线性函数拟合加以验证。结果表明,传统ELM网络平均预测误差为0.31×10-3%和1.6%,HS-ELM的平均预测误差为0.01×10-3%和0.4%。证明和声搜索算法优化后的ELM网络在同等情况下所需的隐含层节点数和预测精度均优于传统ELM网络的。  相似文献   

17.
针对传统的机器学习算法在检测未知攻击方面表现不佳的问题,提出了一种基于变分自动编码器和注意力机制的异常入侵检测方法,通过将变分自编码器和注意力机制相结合,实现使用深度学习方法从基于流量的数据中检测异常网络流量的目标。所提方法利用独热编码和归一化技术对输入数据进行预处理;将数据输入到基于注意力机制的变分编码器中,采集训练样本中隐含特征信息,并将其融入最终潜变量中;计算原始数据与重建数据之间的重建误差,进而基于适当的阈值判断流量的异常情况。实验结果表明,与其他入侵检测方法相比,所提方法明显改善了入侵检测的精度,不仅可以检测已知和未知攻击,而且还可以提高低频次攻击的检测率。  相似文献   

18.
深度自编码器是异常检测领域中被广泛使用的深度学习模型.记忆增强的自编码器模型(Memory-augmented Autoencoder Model,MemAE)通过记忆增强模块解决传统自编码器泛化能力过强的问题,并取得了良好的效果.针对自编码器对于训练数据的正常模式提取能力有限这个问题,通过融合对抗自编码器(Adver...  相似文献   

19.
针对常用的入侵检测算法的收敛速度慢和误报率高的问题,本文提出一种基于栈式稀疏自编码器(SSAE)和概率神经网络(PNN)的入侵检测方法.首先,使用栈式稀疏自编码器对数据进行特征提取,获得低维、深层次的特征集,从而降低检测结果的误报率;然后,使用收敛速度快的概率神经网络对特征集分类,减少了训练模型的时间.本文使用NSL-KDD数据集对模型进行验证,实验结果表明,与其他入侵检测算法相比,SSAE-PNN模型取得了更优秀的检测效果.  相似文献   

20.
谐波电流检测的实时性和准确度直接影响有源电力滤波器的谐波补偿效果.针对基于传统神经网络谐波检测方法的不足,提出了一种基于极限学习机的谐波电流检测新方法.首先详细给出了极限学习机的训练样本的组成和训练方法,然后构造检测模型实现对谐波电流幅值和相位的检测.仿真结果表明,该谐波电流检测方法的检测精度普遍达到10-6,在有白噪声影响的情况下检测精度达到10-4,与基于传统神经网络的谐波检测方法相比具有更高的检测精度和更强的泛化能力,更加适用于谐波源固定的场合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号