首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
将一水硬铝石矿与Ca(OH)_2和过饱和NaOH溶液均匀混合后在微波炉中焙烧。利用X线衍射分析技术,研究不同实验因素(微波焙烧温度、NaOH添加量、Ca(OH)_2添加量和保温时间)对一水硬铝石矿-氢氧化钠-氢氧化钙体系相变规律的影响。研究结果表明:升高微波焙烧温度、增加NaOH和Ca(OH)_2的添加量,延长微波保温时间均有利于NaAlO_2和Ca_2SiO_4的形成,从而提高铝硅分离的效果。但当Ca(OH)_2添加过量时反而对熟料的物相结构不利。实验的最优条件为:NaOH与Al和Fe的物质的量比n_(NaOH)/(n_(Al)+n_(Fe))为1.0,CaO与SiO_2的物质的量比n_(CaO)/n_(SiO_2)为2.0,微波焙烧温度为800℃,保温时间为20 min。此时,熟料的结构疏松多孔,浸出效果好。  相似文献   

2.
活化焙烧一水硬铝石矿增浓溶出过程动力学   总被引:3,自引:1,他引:2  
探讨了一水硬铝石型铝土矿在一定条件下活化焙烧后 ,作为后加矿的增浓溶出过程动力学 .得出焙烧矿在增浓溶出过程中受化学反应控制 ,且为一级反应 .推导出了该过程的动力学方程 ,并求得了相应的表观活化能为1 34 .5kJ/mol.对于更深入研究这一新的氧化铝生产工艺流程 ,在原有拜耳法流程基础上 ,通过适当改造 ,达到增产降耗 ,提高我国氧化铝工业在国际市场上的竞争力具有一定的理论意义  相似文献   

3.
一水硬铝石矿活化焙烧工艺研究   总被引:1,自引:0,他引:1  
利用马弗炉对我国一水硬铝石矿进行了活化焙烧的实验研究,以降低拜耳法溶出的温度.研究了焙烧温度、焙烧时间等因素对铝土矿的溶出性能的影响,将活化焙烧矿的溶出性能与原矿的溶出性能进行了对比.利用SEM技术对活化焙烧矿的微观形貌进行表征.实验结果表明:合适的活化焙烧工艺条件为焙烧温度585℃,焙烧时间60 min.在此焙烧条件下,当达到最大溶出率时,焙烧矿的溶出温度较原矿下降了40℃.  相似文献   

4.
高硫铝土矿微波焙烧预处理   总被引:3,自引:0,他引:3  
为了解决高硫铝土矿马弗炉焙烧脱硫效率不高问题,采用微波加热方式对高硫铝土矿进行焙烧,考察了焙烧温度和焙烧时间对矿物中硫含量的影响。用XRD技术对焙烧矿物晶型结构进行了分析,结果表明,微波焙烧温度400℃、焙烧时间2min时,焙烧矿中硫元素含量已低于0.7%;微波焙烧温度550℃、焙烧时间10min时,焙烧矿中硫元素含量为0.23%。微波使黄铁矿分离出S2-,并促使S2-向表面扩散与氧反应生成SO2气体,加速硫的逸出,提高了脱硫效率。  相似文献   

5.
以氢氧化铝作为后加矿,采用增溶溶出技术处理一水硬铝石矿·研究了一段溶出配料摩尔分数、增溶温度、后加矿加入量、增溶时间对溶出效果的影响·确定了增溶溶出的工艺条件:一段配料摩尔分数控制在1 55~1 60,增溶温度为210~220℃,增溶时间为15~20min,后加矿加入量为一段溶出时矿石量的10%~15%·此条件下铝土矿的溶出率达到88 8%以上,溶出液的摩尔分数降至1 4以下·结果表明,此方法可以降低溶出液的摩尔分数,提高氧化铝的溶出率·  相似文献   

6.
以两种不同成分冷轧低碳钢为研究对象,利用Gleeble-3800热/力模拟实验机,研究了冷轧低碳钢在快速加热条件下,加热速度、化学成分对加热过程中相变规律的影响及连续加热过程中奥氏体晶粒尺寸的演变.研究结果表明,随着加热速度的增加(5~500℃/s),实验钢相变点的升高趋势先快后慢,100℃/s为转折点.在连续加热过程中存在奥氏体晶粒异常长大的温度转折点,为1 050℃;在850~950℃范围内,奥氏体平均晶粒尺寸均小于5μm;添加微合金元素有利于细化奥氏体晶粒.研究结果为利用快速加热、短时保温的方法获得冷轧超细晶钢提供了参考依据.  相似文献   

7.
以酸处理红辉沸石为原料,采用水热反应晶化合成工艺,合成出了质量较高的4A沸石产品。在大量实验基础上,利用X射线衍射分析、扫描电镜观察等系统地研究了反应过程。在整个反应过程中,酸处理红辉沸石和铝酸钠不断溶解,固相的SiO2和Al2O3不断转化为液相的SiO2和Al2O3。这表明,A型沸石的形成是以液相各组分浓度的过饱和为动力,以液相为传质的,因此为液相转化机理。  相似文献   

8.
采用微波加热回流法合成镁铝型二元类水滑石化合物.利用X-射线衍射分析(XRD)对合成产物进行表征.结果表明,合成样品均有水滑石的层状结构,结晶良好.此外,本研究还探讨加热强度、反应时间和反应体系的pH对合成产物结构的影响.  相似文献   

9.
为了深入研究焙烧对一水硬铝石矿增浓溶出过程的影响及其活化焙烧强化溶出的机理,采用化学法提纯,从铝土矿中得到了高纯的一水硬铝石矿;经不同温度焙烧后进行增浓溶出,考察了焙烧温度对铝土矿增浓溶出效果的影响.研究结果表明在一定温度范围内,焙烧矿的溶出性能优于未焙烧矿;当焙烧时间一定时,在525℃焙烧的一水硬铝石矿溶出性能明显改善,焙烧矿石中氧化铝可几乎全部溶出.通过X射线衍射对物相、晶体点阵常数的测定以及扫描电镜对焙烧提纯矿形貌的观察,认为强化溶出的主要机制为一水硬铝石提纯矿在一定条件下焙烧后,由结晶完整的一水硬铝石正交晶型逐渐向结晶不完整的刚玉转变,且矿石表面出现大量的裂纹和孔洞,增加了矿石的比表面积,从而强化了其与碱液反应的能力,溶出性能得到明显改善.  相似文献   

10.
基于混合模型及吉布斯能量平衡模型思想,建立了一种简单的吉布斯能量平衡模型,应用于Fe-C-Mn低碳钢在780℃两相区等温过程中的铁素体向奥氏体相变模拟,并分析了三种吉布斯自由能、有效晶粒尺寸、元素分布等对相变的影响.结果表明,有效晶粒尺寸及界面迁移率影响相变速率,但对最终奥氏体体积分数无影响;相变过程中相界面处锰元素的富集导致的能量耗散同时降低了相变速率及最终奥氏体体积分数.对模拟结果进行实验验证,表明模拟结果与实验结果吻合良好.  相似文献   

11.
采用微波加热和常规加热对硅锰粉和巴西粉锰的脱硅反应进行了动力学行为研究,以巴西粉锰为脱硅剂,与硅锰粉中的硅发生氧化还原反应.微波加热和常规加热分别加热到不同温度并保温一定时间,测定产物中硅含量并计算固相脱硅反应的表观活化能.实验表明:单一和混合料均可在微波场中快速升温.随着温度的升高和保温时间的延长,两种加热方式脱硅率均随之提高,在相同实验条件下,微波加热的脱硅率和反应速率均高于常规加热,微波加热可以提高固相脱硅率;微波加热固相脱硅反应的限制性环节为扩散环节,其表观活化能为102.93 kJ·mol-1,常规加热脱硅反应的表观活化能为180 kJ·mol-1,说明微波加热能改善固相脱硅的动力学条件,提高固相脱硅反应速率,降低脱硅反应的活化能.  相似文献   

12.
冯德灿 《科技咨询导报》2013,(20):104-104,106
价值工程理论起源于材料和代用品的研究,但很快就扩散到各个领域,有广泛的应用范围并逐步取得良好的效果。近年来,新泰市新禹物业有限责任公司吸收价值工程的理论精神,将其应用于公司的节能管理,完成了《禹村社区供暖技术改造》价值工程项目,取得了理想的经济效益和社会效益。  相似文献   

13.
柴油机排气微粒过滤体微波加热再生过程的优化   总被引:3,自引:0,他引:3  
利用微波加热柴油机排气微粒过滤体是一种有望解决过滤体热再生易损坏难题的新颖方法。本文针对自行设计的过滤体微波加热再生系统建立了一个 2维非稳态传热传质模型。模型考虑了再生过程中微波空间加热、二次空气、微粒燃烧等众多因素 ,并得到了实验验证。利用该模型研究了空气保温层、二次空气流速及含氧量、过滤体中微粒沉积量、微波功率及微波加热时间等因素对再生效率、再生速率、再生温度及再生时间等参数的影响。所获得的优化参数被用于实用装置的控制 ,使再生过程缩短到 5~ 7min,而再生温度被控制在可接受范围内  相似文献   

14.
针对微波加热硬化水玻璃砂吸湿性强的特点,以PbO-ZnO系低温玻璃粉作为主要的涂层材料,研究测试了涂层的抗湿性.结果表明:表面涂层后的水玻璃砂样抗吸湿性明显高于普通水玻璃砂样,4h存放强度提高了2.33倍,4h吸水率降低了45.9%.通过SEM和XRD等测试方法,对表面涂层砂样和普通砂样的物相和成分进行了分析:SEM分析表明,表面涂层砂样的表层有涂层材料渗入形成防湿层,防湿层内砂粒表面的粘结桥有许多细小颗粒状物质分布.表面xRD扫描表明:涂层表面出现了3种新的物相,即Al2TiO3,NaAlO2和PbTiO3,它们是表面涂层提高砂样抗湿性的主要原因.  相似文献   

15.
The effect of microwave radiation on the nucleation and crystallization of tailing-based glass-ceramics was investigated using a 2.45 GHz multimode microwave cavity. Tailing-based glass samples were prepared from Shandong gold tailings and Guyang iron tailings utilizing a conventional glass melting technique. For comparison, the tailing-based glass samples were crystallized using two different heat-treatment meth-ods:conventional heating and hybrid microwave heating. The nucleation and crystallization temperatures were determined by performing a dif-ferential thermal analysis of the quenched tailing-based glass. The prepared glass-ceramic samples were further characterized by Fourier trans-form infrared spectroscopy, X-ray diffraction, Raman spectroscopy, thermal expansion coefficient measurements, and scanning electron micros-copy. The results demonstrated that hybrid microwave heating could be successfully used to crystallize the tailing-based glass, reduce the proc-essing time, and decrease the crystallization temperature. Furthermore, the results indicated that the nucleation and crystallization mechanism of the hybrid microwave heating process slightly differs from that of the conventional heating process.  相似文献   

16.
对脱碳物料进行碳含量测定并采用电子探针及X线衍射(XRD)进行显微结构和物相分析。研究结果表明:在实验件下,高碳锰铁粉的碳含量由6.61%分别降至1.54%,1.13%,1.05%,0.94%;脱碳物料的显微结构主要为包裹与镶嵌结构、球形层状结构和实心球形结构,物相组成主要为金属锰、金属锰铁、低碳锰铁碳化物和氧化钙。脱碳温度在900℃时的综合脱碳效果最好,脱碳物料的氧化程度低且无锰酸钙等成分。  相似文献   

17.
轻烧粉-氢氧化钠法制备氢氧化镁的研究   总被引:2,自引:1,他引:1       下载免费PDF全文
以轻烧粉经酸化、氧化除铁等精制过程得到的氯化镁溶液为原料,以氢氧化钠为沉淀剂制备氢氧化镁。研究了pH值对轻烧粉酸化除铁的影响,考察了原料的物质的量比、反应温度、加料时间、陈化时间等因素对产品质量的影响,得到了轻烧粉精制和反应制备氢氧化镁的最佳工艺条件。采用扫描电子显微镜(SEM)、X射线粉末衍射仪(XRD)和激光粒度分布测试仪等对实验产品进行表征。结果表明,该工艺制备的氢氧化镁纯度达到98%以上,CaO质量分数低于0.1%,颗粒呈片状结构,粒度分布均匀,形貌规则。  相似文献   

18.
目前,微波作为一种新型的加热手段已经被广泛应用于化学各个领域中,微波加热过程中由于热点现象存在而造成的危险不容忽视.文中利用有限元方法联合求解了包括电磁场方程、流体力学方程和热传导方程在内的多物理场方程组,研究了搅拌速度的变化对微波加热去离子水过程中热点形成的影响.分析结果显示:搅拌并不能完全消除微波加热过程中的热点.  相似文献   

19.
提出用非线性电流源法分析微波GaAs MESFET振荡器单边带相位噪声特性的新方法。给出了包含MESFET完整非线性噪声模型在内的振荡器相位噪声分析模型,在此基础上利用改进的非线性电流源法分析了振荡器的单边带相位噪声特性。CAD分析与实验结果表明,此法可精确有效地分析振荡器输出基波及各次谐波附近的近载相位噪声分布特性,且适用于非线性微波CAD。  相似文献   

20.
高碳铬铁无渣脱碳法可避免有毒铬渣的排放,利用微波场可快速加热粉状物料的特性,在高碳铬铁粉中配加一定比例的碳酸钙粉,可实现高碳铬铁粉快速固相脱碳.实验结果表明:配加一定比例的碳酸钙粉,不会影响内配碳酸钙高碳铬铁粉混合物料的微波加热特性;提高混合物料的脱碳摩尔比、微波加热温度和保温时间,有利于高碳铬铁粉的深度脱碳,但相应加剧脱碳铬铁粉的氧化程度.合适的固相脱碳条件为:脱碳摩尔比1∶1.0~1∶1.4,微波加热温度1100℃,保温脱碳时间60 min.在上述条件下可使碳质量分数为8.16%的高碳铬铁粉脱碳至3.91%~1.71%,脱碳率为52.08%~79.04%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号