首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Cfg,SiC,B4C,TiO2为原料,热压工艺为1750~1 900℃×30 min,25 MPa,制备了C-SiC-B4C复合材料,并研究了材料的组织与性能.结果表明随热压温度升高,复合材料的体积密度、抗折强度、断裂韧性均升高;相同热压温度下随Cfg含量增加,其抗折强度降低、断裂韧性升高.在1 900℃热压,原料质量配比(质量分数,%)为Cfg20,SiC 61.7,B4C 12.3和TiO26时,复合材料的综合力学性能最佳,抗折强度为142.5MPa,断裂韧性为4.8 MPa.m21.复合材料的主晶相为层状结构的Cfg,在Cfg层间为SiC,B4C和原位生成的TiB2颗粒.复合材料的增...  相似文献   

2.
以Cfg,SiC,B4C,TiO2为原料,热压工艺为1750~1 900℃×30 min,25 MPa,制备了C-SiC-B4C复合材料,并研究了材料的组织与性能.结果表明随热压温度升高,复合材料的体积密度、抗折强度、断裂韧性均升高;相同热压温度下随Cfg含量增加,其抗折强度降低、断裂韧性升高.在1 900℃热压,原料质量配比(质量分数,%)为Cfg20,SiC 61.7,B4C 12.3和TiO26时,复合材料的综合力学性能最佳,抗折强度为142.5MPa,断裂韧性为4.8 MPa.m21.复合材料的主晶相为层状结构的Cfg,在Cfg层间为SiC,B4C和原位生成的TiB2颗粒.复合材料的增韧机制主要为Cfg与陶瓷相的热膨胀不匹配产生的热应力导致的弱界面分层诱导韧化作用.  相似文献   

3.
C_(鳞片)-SiC-B_4C复合材料板烧蚀数值模拟   总被引:4,自引:2,他引:4  
应用有限元法研究了在气动加热条件下不同含量和不同有序化程度C鳞片的C鳞片-SiC-B4C复合材料板的烧蚀行为·结果表明:环境介质温度、材料组分、相对密度以及不同有序化程度C鳞片对板状复合材料的瞬态温度场分布均有明显影响;C鳞片质量分数65%,基体中SiC和B4C的质量比约为5∶1,且C鳞片基本结构单元为有序排列时C鳞片生长连续并形成面积较大的碳层面,平行层状堆积成拱形结构时复合材料具有较强的抗氧化性,与实验结果一致  相似文献   

4.
以碳化硼微粉作为原料,选用SiC和C为烧结助剂,研究了SiC和C对无压烧结B4C材料的体积密度、硬度、抗折强度和断裂韧性等性能的影响.结果表明,最佳烧结温度为1975℃,保温时间是30min.SiC和C的质量分数对材料密度、硬度和抗折强度的影响都是先增大后减小.烧结助剂SiC和C的最佳添加量分别为6%和5%(质量分数)时,得到相应的无压烧结B4C陶瓷材料的最佳力学性能:体积密度为2.45g/cm3,维氏硬度为35GPa,抗折强度为240MPa,断裂韧性为3.0MPa.m1/2  相似文献   

5.
运用MCNP和MCAM程序,选择中子能量为0.025~100eV,B4C/Al的厚度为0.1mm,B4C质量分数为30%,建立B4C颗粒度为63~90μm的B4C/Al复合材料模型,计算其中子透射系数。结果表明,对于能量≤0.1eV的热中子,B4C/Al复合材料较于理想状态中子透射系数下降11%以上;10B直接俘获是B4C/Al复合材料吸收中子的机制,而中子隧道效应则是中子穿透的机制;B4C/Al复合材料得到的直接透过材料的中子通量提高了50%,10 B直接俘获中子数减少了10%~17%。本研究将为B4C/Al中子屏蔽材料的优化设计提供理论依据。  相似文献   

6.
研究无压烧结条件下原位合成工艺对ZrB2/B4C陶瓷复合材料的烧结致密化、力学性能、显微组织的影响.结果表明:材料的密度随着烧结温度的增加和保温时间的延长先增加后降低,在烧结温度2060℃,保温30min时,ZrB2/B4C复合材料的相对密度可达93.2%;材料的硬度随着温度的升高而增大,在2070℃时达到最大值;材料的断裂韧性则随着温度的升高呈现下降趋势,从2000℃时的4.04MPa·m1/2下降到2060℃时的2.36MPa·m1/2.  相似文献   

7.
测试了几组典型的不同体积密度和石墨化度的C/C复合材料洛氏硬度值,研究了C/C复合材料的体积密度和石墨化度与其硬度特性的关系.结果表明:相同石墨化度的C/C复合材料洛氏硬度随其体积密度的增加而增加,相同体积密度的C/C复合材料洛氏硬度随其石墨化度的增加而降低;C/C复合材料体积密度对硬度的影响随其石墨化度的增加而减小;对体积密度为1.75~1.85g/cm3的C/C复合材料,可据其洛氏硬度的范围大致判断其石墨化度的范围;对一定体积密度和热处理温度的C/C复合材料,可通过洛氏硬度判断基体炭的微观结构特点.  相似文献   

8.
以C鳞片,SiC,B4C和TiO2为原料,在2000℃热压合成C-SiC-B4C-TiB2复合材料.研究复合材料在600~1400℃静态空气中的恒温氧化行为,利用TG/DTA研究复合材料氧化机理,利用XRD,SEM研究复合材料恒温氧化后表面相组成和氧化层剖面的显微结构.结果表明不同C鳞片含量的复合材料的氧化动力学曲线均为抛物线,氧化层可分成氧化膜和过渡层,C鳞片质量分数为20%的复合材料在1400℃时有很好的抗氧化自还原能力,表面生成致密的氧化膜,氧化膜的成分为未形成玻璃态的TiO2或SiO2.TiO2固溶体,组织形貌为枝条状.  相似文献   

9.
通过在B4C-ZrB2多孔预烧体中真空熔渗Al制备了B4C-ZrB2-Al复合材料,研究了该复合材料的物相组成和力学性能.结果表明:ZrB2的生成量影响B4C-ZrB2-Al复合材料的物相组成;随着ZrB2生成量的增加,复合材料的硬度先增大后降低,抗折强度和断裂韧性先降低后增大;延性Al的渗入是造成材料断裂韧性提高的主要原因.当ZrB2生成量为35%(质量分数)时,复合材料主要由B4C,ZrB2和Al组成,其气孔率、硬度HRA、抗折强度和断裂韧性分别为1.06%,82.2,521.5MPa和8.6MPa.m1/2.观察材料断口形貌可见较多的韧窝和金属撕裂棱,表明其断裂行为主要为沿晶和穿晶混合断...  相似文献   

10.
采用粉末冶金法制备SiCp/Al-Si复合材料,以CeO2为变质剂,制备含CeO2的SiCp/Al-Si复合材料。研究CeO2的添加量(质量分数)对复合材料组织和力学性能的影响,探讨复合材料中CeO2在烧结过程中的作用机理。研究结果表明:添加CeO2可以有效提高复合材料的致密度和室温拉伸性能,复合材料的致密度和室温拉伸性能随CeO2添加量(质量分数:0%~1.80%)的增加先升高后降低,在CeO2的添加量(质量分数)为0.60%时出现峰值。随着CeO2添加量的增加,CeO2颗粒发生集聚长大。当稀土添加量(质量分数)为0.60%时,变质效果最好。此时,硅相的平均尺寸最小且形态明显球化,硅颗粒的平均直径从7μm下降到5μm以下。  相似文献   

11.
B_4C粉末的气流粉碎及烧结   总被引:1,自引:1,他引:0  
采用气流粉碎对B4C粗粉 (比表面积为 0 5 2m2 g,中位粒度为 2 0 4μm)进行粉碎实验 ,研究了气流粉碎次数对粉末性能、压坯密度和烧结密度的影响及成形压力和烧结温度对B4C烧结密度的影响 .研究结果表明 :当粉碎次数达到 3次后 ,可获得中位粒度小于 1μm的B4C超细粉末 ;经过 4次气流粉碎的B4C超细粉末 ,其比表面积为2 5 3m2 g ,中位粒度为 0 5 6 μm ;该粉末于 2 2 5 0℃无压烧结 1h ,其烧结密度为 2 0 7g cm3 ,达到理论密度的82 .5 % ,平均晶粒粒度为 5 0 μm .可见 ,气流粉碎能改善B4C的烧结性 .  相似文献   

12.
采用粉末冶金法制备 SiCp /Al-Si 复合材料,以 CeO2为变质剂,制备含 CeO2的 SiCp /Al-Si 复合材料。研究 CeO2的添加量(质量分数)对复合材料组织和力学性能的影响,探讨复合材料中 CeO2在烧结过程中的作用机理。研究结果表明:添加 CeO2可以有效提高复合材料的致密度和室温拉伸性能,复合材料的致密度和室温拉伸性能随 CeO2添加量(质量分数:0%~1.80%)的增加先升高后降低,在 CeO2的添加量(质量分数)为0.60%时出现峰值。随着 CeO2添加量的增加,CeO2颗粒发生集聚长大。当稀土添加量(质量分数)为0.60%时,变质效果最好。此时,硅相的平均尺寸最小且形态明显球化,硅颗粒的平均直径从7μm 下降到5μm以下。  相似文献   

13.
为了提高磷酸铁锂的能量密度,本文通过两步高温固相反应法合成了锂离子电池正极LiFePO_4/C复合材料,利用XRD、SEM、TEM等方法对该正极材料的晶体结构、表面形貌进行了分析研究。实验结果表明,LiFePO_4/C具有单一的橄榄石结构,通过掺杂前驱体10%(质量分数)的葡萄糖合成的材料具有良好的充放电性能和循环稳定性能球状,LiFePO4为锂离子的迁移和扩散提供了通道,有利于电化学性能的提升。在0.1 C倍率下进行充放电测试,首次放电比容量可达161 m Ahg-1,在2 C下循环了100次后复合材料的容量为148 m Ahg~(-1),库仑效率高达98%,结果表明碳包覆的LiFePO_4样品的电化学性能得到了很大提高。  相似文献   

14.
为研究C/SiC复合材料的模态密度获取方法并提高其模态密度辨识精度,以正交各向异性C/SiC复合材料板作为研究对象,在薄板理论基础上推导了正交各向异性复合材料板的模态密度理论计算公式;同时,基于点导纳法对正交各向异性C/SiC复合材料板开展了模态密度试验测试研究,并分析了附加质量对试验测试结果的影响.结果表明,对于给定的正交各向异性C/SiC复合材料板,其模态密度理论计算结果是一个定值;附加质量在中高频段对于C/SiC复合材料板模态密度测试结果影响较大;理论计算值与经过附加质量修正后的试验测试结果在中高频段吻合较好;理论解析计算及试验测试方法在进行C/SiC复合材料板模态密度辨识时具有较高的精确度.  相似文献   

15.
采用热压烧结技术制备3种含不同BaSO_4质量分数的钴基自润滑复合材料,研究其在室温到1 000℃范围内的摩擦学性能。在载荷为15 N、滑动速度为0.19 m/s的条件下,采用球-盘式高温摩擦试验机与Si_3N_4陶瓷球配副研究复合材料的高温摩擦学性能。采用X线衍射仪和扫描电镜等分析复合材料的物相成分和摩擦表面形貌。研究结果表明:随着BaSO_4质量分数的增加,复合材料的硬度和密度逐渐降低。从室温到800℃,复合材料的摩擦因数逐渐降低,这是由于随着温度的上升,复合材料的摩擦表面逐渐形成了由铬酸盐、钼酸盐和氧化物等组成的润滑膜,使得复合材料在高温条件下具有了较优良的减摩耐磨性能。在3种钴基复合材料中,含10%BaSO4的钴基自润滑复合材料在400~800℃范围内的摩擦学性能较好。  相似文献   

16.
利用充放电测试、循环伏安和交流阻抗等方法研究LiMn2O4/活性炭复合材料在1 mol/L LiPF6-EC/EMC/DMC有机电解液中的电化学性能.研究结果表明:复合材料同时具备超级电容器高功率密度和锂离子电池高能量密度的特点;复合材料的容量包含活性炭的双电层电容和LiMn2O4电化学反应的容量;当活性炭的质量分数为20%时,10C倍率下复合材料的首次放电容量高达76.4 mA.h/g,100次循环后容量几乎没有衰减(0.01%),与纯LiMn2O4电极相比有很大提高.  相似文献   

17.
分别采用鳞片石墨、生石油焦和煅后沥青焦为基体炭质原料,以酚醛树脂作为粘结剂,掺入定量SiC,B4C陶瓷相,通过模压成型(140MPa 1min)制备弥散型C-SiC-B4C复合材料.研究了原料种类及含量对C-SiC-B4C复合材料性能和显微结构的影响.研究表明:C-SiC-B4C复合材料的性能和显微结构与基体炭质原料的种类和含量有关,生焦的微观结构以流线型为主,以生石油焦为原料制备的复合材料抗压强度最高,达到226MPa;煅后沥青焦的显微结构以镶嵌型居多,制备的样品导电性较差,抗氧化能力最弱;以晶态鳞片石墨为原料制备的复合材料显示出了较低的电阻率和较好的抗氧化性能.  相似文献   

18.
采用基体改性技术将ZrC引入C/C复合材料中,制备一种新型的C/C-ZrC复合材料.利用X线衍射仪、扫描电镜及能谱等分析手段,研究材料的形貌和结构,并采用三点弯曲试验研究材料的力学性能,讨论ZrC质量分数对复合材料断裂行为的影响.研究结果表明:引入的ZrC主要以纳米颗粒的形式分布在材料中;随着ZrC质量分数的升高,C/C-ZrC复合材料抗弯强度逐渐降低,当ZrC质量分数为36.64%时,C/C-ZrC复合材料断裂过程中发生脆性断裂,材料断裂模式转变的原因主要与ZrC质量分数升高引起的纤维损伤及石墨化度提高综合作用有关;经2 000℃的石墨化处理后,断裂过程中材料的脆性行为变得更加明显.  相似文献   

19.
高固含量Si3N4/B4C水基悬浮体的制备   总被引:2,自引:0,他引:2  
高固相、低粘度Si3N4/B4C水基悬浮体的制备是实现陶瓷材料凝胶注模成型工艺的关键和前提.以Si3N4和B4C为初始原料,选择合适的分散剂聚乙烯吡咯烷酮(PVP),通过优选工艺参数,10%的B4C和90%的Si3N4与H2O混合,加入1.5 mg/m2PVP,调节pH=10.5,即可制备出固相体积分数为60%,粘度小于1 Pa*s的Si3N4/B4C水基悬浮体.  相似文献   

20.
SLS/CIP/HIP制造微量FeB+AISI304零件   总被引:1,自引:0,他引:1  
为解决间接选择性激光烧结(SLS)金属零件致密度低与力学性能差等问题.提出将冷等静压技术(CIP)、高温烧结与热等静压技术(HIP)引入SLS.通过排水法结合SEM显微形貌与拉伸性能测试等方法,探讨了在SLS/CIP/HIP过程中高温烧结温度对微量FeB+AISl304 SLS零件致密度影响,微量FeB对其致密度、金相组织与力学性能作用等.结果表明,随烧结温度升高,高温烧结后微量FeB+AISl304 SLS零件致密度逐渐增加;当FeB质量分数从0.5%增加到5%时,其致密度逐渐增加,但是,晶界处a-Fe和Fe2B共晶与Ni和Ni3B共晶增多,导致其力学性能逐渐恶化,其中,当FeB质量分数为0.5%时,其致密度、弹性模量、屈服强度、拉伸强度和延伸率分别达到98.1%,209 GPa,338 MPa,527.36 MPa和8%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号