首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2.   总被引:15,自引:0,他引:15  
Variation of flowering time is found in the natural populations of many plant species. The underlying genetic variation, mostly of a quantitative nature, is presumed to reflect adaptations to different environments contributing to reproductive success. Analysis of natural variation for flowering time in Arabidopsis thaliana has identified several quantitative trait loci (QTL), which have yet to be characterized at the molecular level. A major environmental factor that determines flowering time is photoperiod or day length, the length of the light period, which changes across the year differently with geographical latitude. We identified the EDI locus as a QTL partly accounting for the difference in flowering response to the photoperiod between two Arabidopsis accessions: the laboratory strain Landsberg erecta (Ler), originating in Northern Europe, and Cvi, collected in the tropical Cape Verde Islands. Positional cloning of the EDI QTL showed it to be a novel allele of CRY2, encoding the blue-light photoreceptor cryptochrome-2 that has previously been shown to promote flowering in long-day (LD) photoperiods. We show that the unique EDI flowering phenotype results from a single amino-acid substitution that reduces the light-induced downregulation of CRY2 in plants grown under short photoperiods, leading to early flowering.  相似文献   

2.
The genetics of plant metabolism   总被引:11,自引:0,他引:11  
Variation for metabolite composition and content is often observed in plants. However, it is poorly understood to what extent this variation has a genetic basis. Here, we describe the genetic analysis of natural variation in the metabolite composition in Arabidopsis thaliana. Instead of focusing on specific metabolites, we have applied empirical untargeted metabolomics using liquid chromatography-time of flight mass spectrometry (LC-QTOF MS). This uncovered many qualitative and quantitative differences in metabolite accumulation between A. thaliana accessions. Only 13.4% of the mass peaks were detected in all 14 accessions analyzed. Quantitative trait locus (QTL) analysis of more than 2,000 mass peaks, detected in a recombinant inbred line (RIL) population derived from the two most divergent accessions, enabled the identification of QTLs for about 75% of the mass signals. More than one-third of the signals were not detected in either parent, indicating the large potential for modification of metabolic composition through classical breeding.  相似文献   

3.
Most agronomic traits of importance, whether physiological (such as nutrient use efficiency) or developmental (such as flowering time), are controlled simultaneously by multiple genes and their interactions with the environment. Here, we show that variation in sulfate content between wild Arabidopsis thaliana accessions Bay-0 and Shahdara is controlled by a major quantitative trait locus that results in a strong interaction with nitrogen availability in the soil. Combining genetic and biochemical results and using a candidate gene approach, we have cloned the underlying gene, showing how a single-amino acid substitution in a key enzyme of the assimilatory sulfate reduction pathway, adenosine 5'-phosphosulfate reductase, is responsible for a decrease in enzyme activity, leading to sulfate accumulation in the plant. This work illustrates the potential of natural variation as a source of new alleles of known genes, which can aid in the study of gene function and metabolic pathway regulation. Our new insights on sulfate assimilation may have an impact on sulfur fertilizer use and stress defense improvement.  相似文献   

4.
Accumulation of genetic incompatibilities within species can lead to reproductive isolation and, potentially, speciation. In this study, we show that allelic variation at SRF3 (Strubbelig Receptor Family 3), encoding a receptor-like kinase, conditions the occurrence of incompatibility between Arabidopsis thaliana accessions. The geographical distribution of SRF3 alleles reveals that allelic forms causing epistatic incompatibility with a Landsberg erecta allele at the RPP1 resistance locus are present in A. thaliana accessions in central Asia. Incompatible SRF3 alleles condition for an enhanced early immune response to pathogens as compared to the resistance-dampening effect of compatible SRF3 forms in isogenic backgrounds. Variation in disease susceptibility suggests a basis for the molecular patterns of a recent selective sweep detected at the SRF3 locus in central Asian populations.  相似文献   

5.
6.
7.
Light-quality regulation of freezing tolerance in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
  相似文献   

8.
Recombination and linkage disequilibrium in Arabidopsis thaliana   总被引:4,自引:0,他引:4  
Linkage disequilibrium (LD) is a major aspect of the organization of genetic variation in natural populations. Here we describe the genome-wide pattern of LD in a sample of 19 Arabidopsis thaliana accessions using 341,602 non-singleton SNPs. LD decays within 10 kb on average, considerably faster than previously estimated. Tag SNP selection algorithms and 'hide-the-SNP' simulations suggest that genome-wide association mapping will require only 40%-50% of the observed SNPs, a reduction similar to estimates in a sample of African Americans. An Affymetrix genotyping array containing 250,000 SNPs has been designed based on these results; we demonstrate that it should have more than adequate coverage for genome-wide association mapping. The extent of LD is highly variable, and we find clear evidence of recombination hotspots, which seem to occur preferentially in intergenic regions. LD also reflects the action of selection, and it is more extensive between nonsynonymous polymorphisms than between synonymous polymorphisms.  相似文献   

9.
Variation in DNA sequence contributes to individual differences in quantitative traits, but in humans the specific sequence variants are known for very few traits. We characterized variation in gene expression in cells from individuals belonging to three major population groups. This quantitative phenotype differs significantly between European-derived and Asian-derived populations for 1,097 of 4,197 genes tested. For the phenotypes with the strongest evidence of cis determinants, most of the variation is due to allele frequency differences at cis-linked regulators. The results show that specific genetic variation among populations contributes appreciably to differences in gene expression phenotypes. Populations differ in prevalence of many complex genetic diseases, such as diabetes and cardiovascular disease. As some of these are probably influenced by the level of gene expression, our results suggest that allele frequency differences at regulatory polymorphisms also account for some population differences in prevalence of complex diseases.  相似文献   

10.
11.
Differences in gene expression are an important source of phenotypic variation, and can be caused by changes in cis and/or trans regulation. cis-regulatory variants alter allele-specific expression, whereas trans-regulatory variants influence expression of both alleles in a diploid cell. Because of this difference, we hypothesize that natural selection may favor one type of change over the other. Here, we investigate contributions of cis- and trans-regulatory changes to variable intra- and interspecific gene expression using four strains of Drosophila melanogaster, three strains of D. simulans and a total of 78 genes. We show that cis-regulatory changes account for a greater proportion of the expression differences observed between rather than within species. These data are inconsistent with a neutral model assuming equal probabilities of fixation for cis- and trans-regulatory polymorphisms, suggesting that natural selection influences the molecular mechanisms underlying divergent gene expression. Specifically, cis-regulatory changes seem to accumulate preferentially over time.  相似文献   

12.
Gaut B 《Nature genetics》2012,44(2):115-116
A new study reports SNP genotypes of over 1,300 Arabidopsis thaliana accessions from throughout Eurasia, providing a resource for genome-wide association studies and studies of local adaptation. The extensive data are also used to identify targets of natural selection and to describe genome-wide patterns of recombination.  相似文献   

13.
14.
15.
Evolution is based on genetic variability and subsequent phenotypic selection. Mechanisms that modulate the rate of mutation according to environmental cues, and thus control the balance between genetic stability and flexibility, might provide a distinct evolutionary advantage. Stress-induced mutations stimulated by unfavorable environments, and possible mechanisms for their induction, have been described for several organisms, but research in this area has mainly focused on microorganisms. We have analyzed the influence of adverse environmental conditions on the genetic stability of the higher plant Arabidopsis thaliana. Here we show that a biotic stress factor-attack by the oomycete pathogen Peronospora parasitica-can stimulate somatic recombination in Arabidopsis. The same effect was observed when plant pathogen-defense mechanisms were activated by the chemicals 2,6-dichloroisonicotinic acid (INA) or benzothiadiazole (BTH), or by a mutation (cim3). Together with previous studies of recombination induced by abiotic factors, these findings suggest that increased somatic recombination is a general stress response in plants. The increased genetic flexibility might facilitate evolutionary adaptation of plant populations to stressful environments.  相似文献   

16.
Individual variation in gene expression is important for evolutionary adaptation and susceptibility to diseases and pathologies. In this study, we address the functional importance of this variation by comparing cardiac metabolism to patterns of mRNA expression using microarrays. There is extensive variation in both cardiac metabolism and the expression of metabolic genes among individuals of the teleost fish Fundulus heteroclitus from natural outbred populations raised in a common environment: metabolism differed among individuals by a factor of more than 2, and expression levels of 94% of genes were significantly different (P < 0.01) between individuals in a population. This unexpectedly high variation in metabolic gene expression explains much of the variation in metabolism, suggesting that it is biologically relevant. The patterns of gene expression that are most important in explaining cardiac metabolism differ between groups of individuals. Apparently, the variation in metabolism seems to be related to different patterns of gene expression in the different groups of individuals. The magnitude of differences in gene expression in these groups is not important; large changes in expression have no greater predictive value than small changes. These data suggest that variation in physiological performance is related to the subtle variation in gene expression and that this relationship differs among individuals.  相似文献   

17.
Variation in gene expression within and among natural populations   总被引:21,自引:0,他引:21  
  相似文献   

18.
Hay A  Tsiantis M 《Nature genetics》2006,38(8):942-947
A key question in biology is how differences in gene function or regulation produce new morphologies during evolution. Here we investigate the genetic basis for differences in leaf form between two closely related plant species, Arabidopsis thaliana and Cardamine hirsuta. We report that in C. hirsuta, class I KNOTTED1-like homeobox (KNOX) proteins are required in the leaf to delay cellular differentiation and produce a dissected leaf form, in contrast to A. thaliana, in which KNOX exclusion from leaves results in a simple leaf form. These differences in KNOX expression arise through changes in the activity of upstream gene regulatory sequences. The function of ASYMMETRIC LEAVES1/ROUGHSHEATH2/PHANTASTICA (ARP) proteins to repress KNOX expression is conserved between the two species, but in C. hirsuta the ARP-KNOX regulatory module controls new developmental processes in the leaf. Thus, evolutionary tinkering with KNOX regulation, constrained by ARP function, may have produced diverse leaf forms by modulating growth and differentiation patterns in developing leaf primordia.  相似文献   

19.
Egan CM  Sridhar S  Wigler M  Hall IM 《Nature genetics》2007,39(11):1384-1389
Different species, populations and individuals vary considerably in the copy number of discrete segments of their genomes. The manner and frequency with which these genetic differences arise over generational time is not well understood. Taking advantage of divergence among lineages sharing a recent common ancestry, we have conducted a genome-wide analysis of spontaneous copy number variation (CNV) in the laboratory mouse. We used high-resolution microarrays to identify 38 CNVs among 14 colonies of the C57BL/6 strain spanning approximately 967 generations of inbreeding, and we examined these loci in 12 additional strains. It is clear from our results that many CNVs arise through a highly nonrandom process: 18 of 38 were the product of recurrent mutation, and rates of change varied roughly four orders of magnitude across different loci. Recurrent CNVs are found throughout the genome, affect 43 genes and fluctuate in copy number over mere hundreds of generations, observations that raise questions about their contribution to natural variation.  相似文献   

20.
Geographic patterns of genetic variation, including variation at drug metabolizing enzyme (DME) loci and drug targets, indicate that geographic structuring of inter-individual variation in drug response may occur frequently. This raises two questions: how to represent human population genetic structure in the evaluation of drug safety and efficacy, and how to relate this structure to drug response. We address these by (i) inferring the genetic structure present in a heterogeneous sample and (ii) comparing the distribution of DME variants across the inferred genetic clusters of individuals. We find that commonly used ethnic labels are both insufficient and inaccurate representations of the inferred genetic clusters, and that drug-metabolizing profiles, defined by the distribution of DME variants, differ significantly among the clusters. We note, however, that the complexity of human demographic history means that there is no obvious natural clustering scheme, nor an obvious appropriate degree of resolution. Our comparison of drug-metabolizing profiles across the inferred clusters establishes a framework for assessing the appropriate level of resolution in relating genetic structure to drug response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号