首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper motivates and outlines a new account of scientific explanation, which I term ‘collaborative explanation.’ My approach is pluralist: I do not claim that all scientific explanations are collaborative, but only that some important scientific explanations are—notably those of complex organic processes like development. Collaborative explanation is closely related to what philosophers of biology term ‘mechanistic explanation’ (e.g., Machamer et al., Craver, 2007). I begin with minimal conditions for mechanisms: complexity, causality, and multilevel structure. Different accounts of mechanistic explanation interpret and prioritize these conditions in different ways. This framework reveals two distinct varieties of mechanistic explanation: causal and constitutive. The two have heretofore been conflated, with philosophical discussion focusing on the former. This paper addresses the imbalance, using a case study of modeling practices in Systems Biology to reveals key features of constitutive mechanistic explanation. I then propose an analysis of this variety of mechanistic explanation, in terms of collaborative concepts, and sketch the outlines of a general theory of collaborative explanation. I conclude with some reflections on the connection between this variety of explanation and social aspects of scientific practice.  相似文献   

2.
Scientific explanation is a perennial topic in philosophy of science, but the literature has fragmented into specialized discussions in different scientific disciplines. An increasing attention to scientific practice by philosophers is (in part) responsible for this fragmentation and has put pressure on criteria of adequacy for philosophical accounts of explanation, usually demanding some form of pluralism. This commentary examines the arguments offered by Fagan and Woody with respect to explanation and understanding in scientific practice. I begin by scrutinizing Fagan's concept of collaborative explanation, highlighting its distinctive advantages and expressing concern about several of its assumptions. Then I analyze Woody's attempt to reorient discussions of scientific explanation around functional considerations, elaborating on the wider implications of this methodological recommendation. I conclude with reflections on synergies and tensions that emerge when the two papers are juxtaposed and how these draw attention to critical issues that confront ongoing philosophical analyses of scientific explanation.  相似文献   

3.
Approaches to the Internalism–Externalism controversy in the philosophy of mind often involve both (broadly) metaphysical and explanatory considerations. Whereas originally most emphasis seems to have been placed on metaphysical concerns, recently the explanation angle is getting more attention. Explanatory considerations promise to offer more neutral grounds for cognitive systems demarcation than (broadly) metaphysical ones. However, it has been argued that explanation-based approaches are incapable of determining the plausibility of internalist-based conceptions of cognition vis-à-vis externalist ones. On this perspective, improved metaphysics is the route along which to solve the Internalist–Externalist stalemate. In this paper we challenge this claim. Although we agree that explanation-orientated approaches have indeed so far failed to deliver solid means for cognitive system demarcation, we elaborate a more promising explanation-oriented framework to address this issue. We argue that the mutual manipulability account of constitutive relevance in mechanisms, extended with the criterion of ‘fat-handedness’, is capable of plausibly addressing the cognitive systems demarcation problem, and thus able to decide on the explanatory traction of Internalist vs. Externalist conceptions, on a case-by-case basis. Our analysis also highlights why some other recent mechanistic takes on the problem of cognitive systems demarcation have been unsuccessful. We illustrate our claims with a case on gestures and learning.  相似文献   

4.
Explanations implicitly end with something that makes sense, and begin with something that does not make sense. A statistical relationship, for example, a numerical fact, does not make sense; an explanation of this relationship adds something, such as causal information, which does make sense, and provides an endpoint for the sense-making process. Does social science differ from natural science in this respect? One difference is that in the natural sciences, models are what need “understanding.” In the social sciences, matters are more complex. There are models, such as causal models, which need to be understood, but also depend on background knowledge that goes beyond the model and the correlations that make it up, which produces a regress. The background knowledge is knowledge of in-filling mechanisms, which are normally made up of elements that involve the direct understanding of the acting and believing subjects themselves. These models, and social science explanations generally, are satisfactory only when they end the regress in this kind of understanding or use direct understanding evidence to decide between alternative mechanism explanations.  相似文献   

5.
6.
Laurence BonJour, among others, has argued that inference to the best explanation allows us to reject skeptical hypotheses in favor of our common-sense view of the world. BonJour considers several skeptical hypotheses, specifically: (i) our experiences arise by mere chance, uncaused; (ii) the simple hypothesis which states merely that our experiences are caused unveridically; and (iii) an elaborated hypothesis which explains in detail how our unveridical experiences are brought about. A central issue is whether the coherence of one’s experience makes that experience more likely to be veridical. BonJour’s recent treatment of “analog” and “digital” skeptical hypotheses is also discussed. I argue that, although there are important lessons to be learned from BonJour’s writings, his use of inference to the best explanation against skepticism is unsuccessful.  相似文献   

7.
I defend the claim that understanding is the goal of explanation against various persistent criticisms, especially the criticism that understanding is not truth-connected in the appropriate way, and hence is a merely psychological (rather than epistemic) state. Part of the reason why understanding has been dismissed as the goal of explanation, I suggest, is because the psychological dimension of the goal of explanation has itself been almost entirely neglected. In turn, the psychological dimension of understanding—the Aha! experience, the sense that a certain explanation “feels right”, and so on—has been conspicuously overemphasized. I try to correct for both of these exaggerations. Just as the goal of explanation includes a richer psychological—including phenomenological—dimension than is generally acknowledged, so too understanding has a stronger truth connection than is generally acknowledged.  相似文献   

8.
Scientific understanding, this paper argues, can be analyzed entirely in terms of a mental act of “grasping” and a notion of explanation. To understand why a phenomenon occurs is to grasp a correct explanation of the phenomenon. To understand a scientific theory is to be able to construct, or at least to grasp, a range of potential explanations in which that theory accounts for other phenomena. There is no route to scientific understanding, then, that does not go by way of scientific explanation.  相似文献   

9.
In this article I argue that there are two different types of understanding: the understanding we get from explanations, and the understanding we get from unification. This claim is defended by first showing that explanation and unification are not as closely related as has sometimes been thought. A critical appraisal of recent proposals for understanding without explanation leads us to discuss the example of a purely classificatory biology: it turns out that such a science can give us understanding of the world through unification of the phenomena, even though it does not give us any explanations. The two types of understanding identified in this paper, while strictly separate, do have in common that both consist in seeing how the individual phenomena of the universe hang together. Explanations give us connections between the phenomena through the asymmetric, ‘vertical’ relation of determination; unifications give us connections through the symmetric, ‘horizontal’ relation of kinship. We then arrive at a general definition of understanding as knowledge of connections between the phenomena, and indicate that there might be more than two types of understanding.  相似文献   

10.
A mechanistic artifact explanation is an explanation that accounts for an artifact behavior by describing the underlying mechanism. The article shows that there are different kinds of mechanistic artifact explanation: top-down and bottom-up explanation, and I also distinguish between less and more inclusive top-down explanations. To illustrate these different kinds of explanation, the behavior of a simple, fictional artifact is explained in different ways. I defend that which explanation is ideal, depends on pragmatic factors (e.g., the background knowledge of the explainee and the specific goal for which the explanation will be used). For each kind of explanation, the situations, goals and interests for which it is most appropriate are specified, resulting in a pragmatic theory of mechanistic artifact explanation. This theory is compared to Jeroen de Ridder’s account of the pragmatics of mechanistic artifact explanation.  相似文献   

11.
Wesley Salmon's version of the ontic conception of explanation is a main historical root of contemporary work on mechanistic explanation. This paper examines and critiques the philosophical merits of Salmon's version, and argues that his conception's most fundamental construct is either fundamentally obscure, or else reduces to a non-ontic conception of explanation. Either way, the ontic conception is a misconception.  相似文献   

12.
This paper shows that two questions productively overlap: first, in virtue of what does an agent infer one hypothesis rather than another? Second, in virtue of what does an agent refer to one natural kind rather than another? Peter Lipton (2004) answers the first question by articulating the model of inference to the best explanation. Lipton’s answer to the first question is appropriated as an answer to the second.  相似文献   

13.
Some scientific explanations are distinctively historical. The aim of this paper is to say what gives such explanations their historical character. A secondary aim is to describe what makes an explanation a stronger or weaker historical explanation. We begin with a critical discussion of John Beatty's and Eric Desjardins' work on historicity and historical narrative. We then offer an alternative account of historical explanation that draws on the work of earlier philosophers (Gallie, Danto, Mink, and Hull). In that alternative account, we highlight four features of narrative explanation that Beatty and Desjardins underemphasize: central subjects; historical trajectories; the idea that historical narratives are known retrospectively; and criteria for determining what is a stronger or weaker historical narrative.  相似文献   

14.
15.
Narratives are about not only what actually happened, but also what might have. And narrative explanations make productive use of these unrealized possibilities. I discuss narrative explanation as a form of counterfactual, difference-making explanation, with a demanding qualification: the counterfactual conditions are historically or narratively (not merely logically or physically) possible. I consider these issues in connection with literary, historical and scientific narratives.  相似文献   

16.
This paper systematically compares two frameworks for analysing technical artefacts: the Dual-Nature approach, exemplified by the contributions to Kroes and Meijers (2006), and the collectivist approach advocated by Schyfter (2009), following Kusch (1999). After describing the main tenets of both approaches, we show that there is significant overlap between them: both frameworks analyse the most typical cases of artefact use, albeit in different terms, but to largely the same extent. Then, we describe several kinds of cases for which the frameworks yield different analyses. For these cases, which include one-of-a-kind artefacts and defect types, the Dual-Nature framework leads to a more attractive analysis. Our comparison also gives us the opportunity to respond to Vaesen’s (2010, this issue) critical paper. We do so by distinguishing two readings of the Dual-Nature framework and pointing out that on the sustainable, weaker reading, Vaesen’s considerations supplement the framework rather than offering an alternative to it.  相似文献   

17.
In this paper I consider the objection that the Enhanced Indispensability Argument (EIA) is circular and hence fails to support mathematical platonism. The objection is that the explanandum in any mathematical explanation of a physical phenomenon is itself identified using mathematical concepts. Hence the explanandum is only genuine if the truth of some mathematical theory is already presupposed. I argue that this objection deserves to be taken seriously, that it does sometimes undermine support for EIA, but that there is no reason to think that circularity is an unavoidable feature of mathematical explanation in science.  相似文献   

18.
This paper investigates the important role of narrative in social science case-based research. The focus is on the use of narrative in creating a productive ordering of the materials within such cases, and on how such ordering functions in relation to ‘narrative explanation’. It argues that narrative ordering based on juxtaposition - using an analogy to certain genres of visual representation - is associated with creating and resolving puzzles in the research field. Analysis of several examples shows how the use of conceptual or theoretical resources within the narrative ordering of ingredients enables the narrative explanation of the case to be resituated at other sites, demonstrating how such explanations can attain scope without implying full generality.  相似文献   

19.
Philosophy of science offers a rich lineage of analysis concerning the nature of scientific explanation, but the vast majority of this work, aiming to provide an analysis of the relation that binds a given explanans to its corresponding explanandum, presumes the proper analytic focus rests at the level of individual explanations. There are, however, other questions we could ask about explanation in science, such as: What role(s) does explanatory practice play in science? Shifting focus away from explanations, as achievements, toward explaining, as a coordinated activity of communities, the functional perspective aims to reveal how the practice of explanatory discourse functions within scientific communities given their more comprehensive aims and practices. In this paper, I outline the functional perspective, argue that taking the functional perspective can reveal important methodological roles for explanation in science, and consequently, that beginning here provides resources for developing more adequate responses to traditional concerns. In particular, through an examination of the ideal gas law, I emphasize the normative status of explanations within scientific communities and discuss how such status underwrites a compelling rationale for explanatory power as a theoretical virtue.  相似文献   

20.
During the 1930s and 1940s, American physical organic chemists employed electronic theories of reaction mechanisms to construct models offering explanations of organic reactions. But two molecular rearrangements presented enormous challenges to model construction. The Claisen and Cope rearrangements were predominantly inaccessible to experimental investigation and they confounded explanation in theoretical terms. Drawing on the idea that models can be autonomous agents in the production of scientific knowledge, I argue that one group of models in particular were functionally autonomous from the Hughes–Ingold theory. Cope and Hardy’s models of the Claisen and Cope rearrangements were resources for the exploration of the Hughes–Ingold theory that otherwise lacked explanatory power. By generating ‘how-possibly’ explanations, these models explained how these rearrangements could happen rather than why they did happen. Furthermore, although these models were apparently closely connected to theory in terms of their construction, I argue that partial autonomy issued in extra-logical factors concerning the attitudes of American chemists to the Hughes–Ingold theory. And in the absence of a complete theoretical hegemony, a degree of consensus was reached concerning modelling the Claisen rearrangement mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号