首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以中间相炭微球和活性炭为原料,采用物理混合的方法制备锂离子电池复合负极材料.用扫描电镜、X线衍射仪、恒电流充放电和循环伏安(CV)测试来表征材料的表面形貌、结构和电化学性能.研究结果表明:制备复合材料的中间相炭微球和活性炭混合均匀;复合材料首次放电和充电比容量分别为549和290 mA-h/g,当电压为0.25~3.00 V时,复合材料充电曲线斜率介于中间相炭微球和活性炭的充电曲线斜率之间,比容量为93 mA-h/g,显示复合负极材料同时具有脱嵌锂特性和双电层特性;循环30次后,复合材料的放电容量为240 mA-h/g;在充放电电流密度为4 A/g时,复合材料的电化学极化较中间相炭微球的极化显著降低,是一种具有发展前途的锂离子电池负极材料.  相似文献   

2.
为提高金属有机框架材料HKUST-1的比电容,将纳米HKUST-1(nHKUST-1)与聚苯胺(PANI)复合,制成超级电容器(nHKUST-1/PANI),并对其进行了循环伏安(CV)、交流阻抗(EIS)、恒电流充放电(GCD)和循环充放电测试。结果显示:在1 mol/L KOH溶液中,纯nHKUST-1为电极,电流密度为1A/g时,比电容值为103F/g;PANI电极的比电容值为344F/g;质量比m(nHKUST-1)∶m(PANI)为1∶1时,复合电极比电容值为238F/g,约为nHKUST电极比电容值的2.2倍;而m(nHKUST-1)∶m(PANI)为1∶2,复合电极电容值为244F/g,约为nHKUST电极比电容值的2.4倍,并且循环1 000次后,比电容值仍保持87%。  相似文献   

3.
用超声波法合成γ相二氧化锰(γ-MnO2),然后通过循环伏安法在γ-MnO2颗粒表面电聚合聚苯胺(PANI),合成PANI/MnO2复合电极. 应用恒流充放电方法测试样品的电化学性能,结果表明γ-MnO2电极材料在电流密度500 mA/g时,比电容为210 F/g,而复合材料电极比电容为500 F/g,相比γ-MnO2电极材料提高了1.38倍.  相似文献   

4.
以苯酚和甲醛为原料,盐酸为催化剂,制备醇溶性酚醛树脂前驱体,探讨炭化温度对炭微球性能的影响,并将炭微球在3 mol/L HNO3溶液中活化后得到活性炭微球。利用红外光谱、X线衍射(XRD)、扫描电镜(SEM)、循环伏安、恒流充放电、循环寿命等对该材料进行表征及电化学性能测试。研究结果表明:炭微球的最佳炭化温度为750℃,在该温度下制备的炭微球具有良好的球形形貌,其结构为部分石墨化的无定形炭;活性炭微球作为电容器电极材料具有良好的电化学性能,在1 mV/s扫描速度下比电容达到247.8 F/g;在0.5 A/g电流密度充放电下扣式超级电容器比电容高达60 F/g,且充放电循环5 000次后比电容几乎没有衰减。  相似文献   

5.
利用水热法合成了纳米棒状的MnO_2/碳纳米球(CNPs)作为电化学超级电容器的电极材料.利用场发射扫描电镜(FESEM)、X射线衍射光谱分析(XRD)对样品的微观形貌、物相进行分析;利用循环伏安法和恒电流充放电测试材料的电化学性能.结果表明:纳米棒状MnO_2/CNPs复合材料具有良好的电化学性能.在0.1 A/g的电流密度,1 mol/L Na_2SO_4电解液中,电极材料的比电容高达305.6 F/g,远高于纯碳球的比电容(49.3 F/g),当电流密度增至5 A/g时,材料的比电容为235 F/g,比电容仍能保持76.9%.  相似文献   

6.
超级电容器寿命长、安全性高,并可以实现快速充放电,是化学电源研究的热点之一。文章通过简单的化学原位聚合法将聚苯胺(polyaniline,PANI)与碳纳米管(carbon nanotubes,CNTs)进行复合,得到聚苯胺纳米管(PANI-CNTs)复合材料。利用场发射扫描电子显微镜(field emission scanning electron microscope, FESEM)对其形貌和结构进行表征。循环伏安(cyclic voltammetry,CV)曲线、恒电流充放电(galvanostatic charge-discharge, GCD)曲线和循环寿命测试结果表明,纳米复合电极材料在三电极体系中,电流密度为1 A/g时,比电容高达690 F/g,3 000次循环后仍保持初始电容80%,在组装成柔性器件后,保留了优异的电化学性能,并展现出卓越的柔性机械性能。  相似文献   

7.
以苯胺(PANI)和多壁碳管(MWNTs)为原料,采用原位聚合法合成聚苯胺,使聚苯胺均匀包覆在碳管表面,得到PANI/MWNTs复合材料.在1mol/L H2SO4电解液中,以甘汞电极为参比电极,通过循环伏安、恒流充放电测试其电化学特性.结果表明,当电流密度在1A/g时,复合材料的比电容达到241.6F/g,远大于纯碳...  相似文献   

8.
纳米导电聚苯胺(PANI),作为超级电容器的电极材料,有着广阔的应用前景.采用三电极体系下的恒定电流法,通过多步电化学聚合获得以导电玻璃(ITO)为基底的纳米结构导电聚苯胺薄膜.采用场发射扫描电子显微镜(FESEM)对薄膜进行形貌表征.由于电极材料的纳米结构,材料的比电容在电流密度为1 A/g及10 A/g下分别为829 F/g及667 F/g.以20 A/g的电流密度对电极进行500次的恒定电流充放电测试,电极的比电容下降为95.1%,显示了较好的循环稳定性.  相似文献   

9.
采用恒电流法在聚吡咯(PPy)和聚苯胺(Pani)的相应单体溶液中制备了PPy和Pani的复合型导电高分子膜电极. 根据循环伏安曲线、充放电曲线和电化学阻抗谱,研究了超级电容器的电容性能. 结果表明, 聚合顺序对复合型导电高分子膜电极的电容性能有很大影响, 以PPy为底层的复合型电极的电容性能远高于其他复合型电极或单层膜电极. 不锈钢/PPy/Pani和不锈钢/PPy/Pani/PPy电极的比电容分别高达196.08 F/g和212.53 F/g.  相似文献   

10.
制备了一种具有氧化还原活性的聚乙烯醇-氢氧化钾-硫氰酸钾(PVA-KOH-KSCN)凝胶电解质,用于活性炭超级电容器的研究.利用循环伏安法、恒电流充放电、交流阻抗谱等电化学测试方法进行表征.结果表明,KSCN的引入提高了电解质的电导率和电极的电容.在相同电流密度时,以PVA-KOH-KSCN为凝胶电解质的超级电容器电极比电容比以PVA-KOH为凝胶电解质的提高了约73%,达到209.48F/g,此外,超级电容器还表现出良好的循环稳定性.  相似文献   

11.
以氨水作为催化剂,间苯二酚和甲醛为前驱体制备单分散酚醛(resorcinolformaldehyde,RF)树脂微球和碳微球.采用循环伏安法、电化学交流阻抗和恒电流充放电等方法对由RF树脂得到的碳微球的电化学性能的测试表明,其可以作为超级电容器电极材料.在扫描速率为1mV·s-1时,比电容为175.9F·g-1,电阻为0.5Ω,循环500圈后仍保持94.4%的电容量,具有优异循环寿命.结果表明,由酚醛树脂制备的单分散碳微球作为超级电容器的电极材料具有降低离子运输阻力和提高超级电容器稳定性的功能.  相似文献   

12.
以苯胺的硫酸溶液为电化学沉积液,钛网为电沉积基底材料,用恒电流沉积法在钛网上电沉积导电聚苯胺(PANI)。通过控制恒电流沉积时间控制沉积于钛网上的PANI量,并通过循环伏安法测试不同电极的面积比电容,优化了恒电流法在钛网上沉积PANI的最佳时间。以优化的电沉积时间制备的PANI/Ti为活性电极,以H2SO4/聚乙烯醇(H2SO4/PVA)为凝胶电解质组装了半透明柔性的电化学电容器,并通过循环伏安法、恒电流充放电法和电化学阻抗法研究了半透明柔性电容器的电化学性能。结果表明最佳的PANI/Ti电极的电活性材料的面积比电容最大可达25mF·cm~(-2),拥有良好的柔性与透光性,且在充放电时存在电致变色现象。  相似文献   

13.
以制备的纳米纤维素(NFC)、还原氧化石墨烯(RGO)及聚苯胺(PANI)为原料,按照一定的质量比进行混合超声分散,经真空抽滤得到NFC/RGO(NR)和NFC/RGO/PANI(NRP)复合纸基电极材料.探讨了NFC的羧基含量与复合纸基电极的电学性能和机械性能的关系,以获得性能更优的复合纸基电极.最后以聚乙烯醇/硫酸(PVA/H_2SO_4)为电解质,制备了NFC/RGO和NFC/RGO/PANI复合纸基超级电容器(NRS和NRPS).结果表明:通过改变NFC、RGO及PANI的质量比,NFC可以有效阻止RGO和PANI的团聚,同时其亲水特性可以有效提高电解质离子的扩散速率;NFC羧基含量增加可以提高复合材料间的结合,从而提升复合纸基电极材料的电学性能和机械性能;当NFC、RGO和PANI的质量比为5∶3∶3时,在0.5A/g电流密度下,NRPS纸基超级电容器的比电容为305F/g,经过1000次循环后其比电容仍可保留起始的98.3%,表现出良好的电化学循环稳定性.  相似文献   

14.
掺锂聚苯胺/活性炭超级电容器电极材料的制备及电性能   总被引:1,自引:0,他引:1  
采用苯胺在改性活性炭表面原位聚合的方法,合成了掺锂的超级电容器用聚苯胺/活性炭复合电极材料.用扫描电镜(SEM)研究了掺杂前后该复合材料的形态.在6mol/LKOH溶液中,以Hg/HgO电极为参比电极对电极材料进行循环伏安、恒流充放电、交流阻抗等电化学性能的测试,考察了掺杂锂盐后作为超级电容器的电极材料的电极性能.结果表明,掺杂锂盐后的复合电极材料的比容量有很明显的提高,由未掺杂锂时的372F/g提高到466F/g。多次循环充放电后电容量的保留率也得到显著的提高。  相似文献   

15.
目的研究镍锰氧化物电极材料的形貌及相组成对超级电容器电化学性能的影响。方法分别采用模板法、水热法及旋转蒸发方法制备了不同形貌的镍锰氧化物,利用X射线衍射(XRD)、扫描电子显微镜(SEM)手段对材料的物相、晶体结构以及微观形貌进行表征,采用三电极体系测试其作为超级电容器电极材料的电化学性能。结果循环伏安和电化学性能循环测试结果表明,在0.1 A/g电流密度下,空心球、微米球及纳米颗粒3种不同形貌的镍锰氧化物电极材料的的放电容量分别是90.57,36.4和8.72 F/g。空心球状镍锰氧化物电极材料显示出较优异的电容特性。充放电循环1 000次后,其放电容量保持率为85.28%。结论独特的空心球状结构有利于增强电极材料的电化学性能。  相似文献   

16.
采用层-层自组装法制备了前驱体RGO/Ni-Co@Ni-foam(泡沫镍负载石墨烯/镍-钴金属化合物),并在高温下煅烧得到RGO/NiCo_2O_4@Ni-foam复合电极材料。运用X射线衍射仪、扫描电子显微镜以及能谱仪对多孔RGO/NiCo_2O_4@Ni-foam复合材料进行结构表征,并通过循环伏安、恒流充放电等测试方法考察了其作为电极材料的电化学性能。结果表明,制备的多孔RGO/NiCo_2O_4@Ni-foam复合电极材料的比电容在电流密度为0.5A/g时可达到444F/g,并且在经过1 000次循环实验后,比电容仍有342F/g。这表明多孔RGO/NiCo_2O_4@Ni-foam复合材料在超级电容器领域具有广阔的应用前景。  相似文献   

17.
采用化学镀的方法在中间相炭微球的表面镀覆金属银,通过扫描电镜分析镀银后炭微球的表面形貌,利用X射线衍射对试样进行物相分析.将镀银的中间相炭微球用作锂离子电池负极材料,测试其电化学性能.研究结果表明:金属银镀覆在中间相炭微球的表面,随着镀银含量的增加,镀银中间相炭微球的首次放电容量升高,银含量16.5%的中间相炭微球的首次放电容量升高12.6mA·h/g;在湿度为25%的气氛中搁置12h后,未镀银的炭微球的放电容量降低16.3mA·h/g,循环稳定性变弱,20次循环后容量保持率为74.6%,而镀银量为16.5%炭微球的首次放电容量只降低6.1mA·h/g,并且循环稳定性强,20次循环后容量保持率为95.8%,说明镀银后中间相炭微球在潮湿条件下的电化学性能得到改善.  相似文献   

18.
以等物质的量的高锰酸钾和乙酸锰为原料,采用机械化学法制备出弱结晶型α-MnO2超级电容器电极材料.在1.2V电压内,200mA·g-1电流密度下对对称型超级电容器进行恒流充放电测试.采用XRD法、循环伏安及交流阻抗法对充放电前后电极材料的结构以及电化学性能进行表征,首次采用求斜率法对充放电曲线分析.结果表明:超级电容器表现出法拉第电容与双电层电容的双重特征;在循环过程中,电化学惰性物质Mn3O4生成,循环伏安图中氧化还原峰逐渐消失;充放电曲线的法拉第电容特征逐渐消失而接近双电层电容理想曲线;超级电容器的比容量、等效串联电阻发生了对应的变化,其最大电极比容量达到416F·g-1,经过近500次循环后,比容量为220F·g-1.  相似文献   

19.
以废旧纺织品聚丙烯腈为碳源,在氯化锌-氯化钾熔盐体系一步碳化活化制备超级电容器碳材料.通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、比表面分析仪等物理测试方法对材料进行结构、形貌和孔隙表征.并利用电化学工作站在三电极体系下对制备的碳材料进行循环伏安(CV)、恒流充放电(GCD)和交流阻抗(EIS)测试.结果表明,通过在空气中200℃稳定化10 h、氯化锌-氯化钾熔盐体系中800℃下炭化2 h制备的活性炭具有较大的比表面积和发达的孔结构,作为超级电容器电极材料展现出优异的电化学性能.在0. 25 A/g电流密度下最大比电容达319 F/g;在电流密度高达10 A/g下,比电容仍保留62. 7%.经过5 000次充放电循环性能测试,容量保持率可达82. 6%.  相似文献   

20.
通过对普通颗粒活性炭采取不同优化工艺处理,发现经空气预氧化后,再用混合酸(磷酸+硫酸)或氢氧化钾进行活化处理,可得到高比电容超级电容器用活性炭.红外光谱和氮吸脱附分析表明:预氧化处理并没有明显增加其表面官能团,但有利于疏通孔道,提高活性炭的有效孔容积;混酸和强碱活化处理明显丰富活性炭的表面电活性基团,并且增大材料的比表面积.采用交流阻抗、循环伏安、恒流充放电等电化学方法对活化材料进行超级电容行为测试,表明经氧化-活化处理的活性炭电极传荷阻抗小、电容特征显著,循环性能稳定.在1.0 A/g电流条件下,经过空气氧化-混酸活化处理的活性炭(POAC_A)电极比容量为187 F/g,空气氧化-碱活化处理的活性炭(POAC_B)电极比容量达到206F/g.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号