首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以Eu2O3(99.99%),CaCl2.6H20(AR),Na2WO4.2H2O(AR)为原料,水热合成Eu3+掺杂的CaWO4系列荧光粉,通过XRD、荧光光谱等表征手段,考察荧光粉的晶体结构和三价铕离子的掺杂量对荧光粉体发光性能的影响.研究表明:由于Eu3+半径与Ca2+半径大小相当,Eu3+掺杂的CaWO4荧光粉并未引起其晶体结构的较大变化;在395 nm激发下,荧光粉Ca1-xWO4∶xEu3+的基质CaWO4由于WO42-内部的电荷跃迁产生主峰位于464 nm附近的宽带峰,掺杂的Eu3+分别在590 nm、616 nm处出现对应于Eu3+的5D0→7F15、D0→7F2跃迁的特征发射峰.随着Eu3+浓度的增加,616 nm红光发射强度增强,当Eu3+掺杂量为0.3%时,Ca1-xWO4∶xEu3+在395 nm激发下可得到接近白光效果的荧光发射,其对应的CIE色坐标为X=0.3602,Y=0.3528.  相似文献   

2.
利用高温固相反应法制备CaSnO3:Eu3+发光体,采用X射线衍射(XRD)技术和荧光光谱等测试手段对样品进行研究.结果表明:Eu3+离子的掺杂未改变CaSnO3的晶体结构;Ca1-xEuxSnO3样品的发射以电偶极跃迁5D0-7F2为主,在紫外光照射下产生强的红光发射;Ca1-xEuxSnO3样品在240~340 nm范围内存在Eu3+-O2-电荷迁移吸收带,随着Eu3+掺杂浓度x的增加,吸收带峰位从276 nm红移到281 nm附近.  相似文献   

3.
以AlCl3·6H2O,BaCO3和MnCO3为原料,分别溶于去离子水和柠檬酸中,采用溶胶凝胶法合成了BaAl12xO19∶Mnx荧光粉。IR分析表明,干凝胶具有柠檬酸盐结构。XRD分析表明,1200℃煅烧,粉末中的主要成分为BaAl2O4,1400℃煅烧,粉末为BaAl12xO19∶Mnx和BaAl2O4的混合物,此时仍残余部分BaAl2O4,1500℃煅烧能合成单相BaAl12xO19∶Mnx,相对于传统的高温固相合成法降低100~300℃。SEM分析表明,晶粒较小且具有片状结构。碱土金属离子Mg2+,Ca2+和Sr2+的掺杂对BaAlO∶Mn荧光粉的发光性能有一定的影响。  相似文献   

4.
采用溶胶凝胶法合成Ca Y1-x Al O4:x Eu3+ 荧光粉,对样品进行 X 射线光电子能谱(XPS)、X 射线粉末衍射(XRD)、透射电镜(TEM)以及荧光光谱(PL)等表征,探讨反应的合成温度、时间及铕离子的掺杂浓度对样品发光性能的影响.结果表明,在900~1000℃时,晶体初步形成,在1100~1350℃时,可生成很纯的四方晶体结构.在温度1200℃和铕离子的掺杂量x=0.01时,样品在反应时间为6h时发光强度最强.在λex=273nm 光激发下,发射光谱位于589nm、623nm 和704nm 处的三个尖峰,分别归属于 Eu3+ 离子的5D0→7F1、5D0→7F2和5D0→7F4能级跃迁,当铕离子的掺杂浓度x=0.02时(温度1200 ℃及时间6h),样品发光强度最强,荧光体发射红光.铕离子浓度猝灭的作用机理为邻近离子间的相互作用,其荧光寿命为1.325ms.  相似文献   

5.
通过固相法合成含有不同AlO_2-离子浓度的红色荧光粉Ca(TiO_3)_(1-x/2)(AlO_2)_x:Eu。XRD分析表明:当Al O2-离子掺杂浓度低于30%时,Ca(TiO_3)_(1-x/2)(AlO_2)_x:Eu与CaTiO_3具有相似的钙钛矿结构;此外,AlO_2-离子的固溶导致该荧光粉在617nm处的荧光发射强度得到了极大地增强。实验表明:是该荧光粉具有最强荧光发射强度的Al O2-掺杂浓度为20mol%。更重要的是荧光粉Ca(TiO_3)0.89(AlO_2)0.22:Eu不但可以被Ga N基NUV(395~400nm)LED激发,而且还能被Ga N-LED(465nm)有效激发。实验表明:Ca(TiO_3)(Al O):Eu是一种性能优越的制备三基色LED的红色荧光粉。  相似文献   

6.
为研发白光LED(light-emitting diodes,发光二极管)用红色荧光粉,采用高温固相法制备了可被近紫外光有效激发的Sr_2SnO_4∶Eu~(3+)荧光粉,对样品分别进行了X-射线衍射(XRD)、扫描电镜(SEM)和荧光光谱(PL)的测定。结果表明:当烧结温度为1 300℃时,可以得到Sr_2Sn O_4的纯相,所制备的Sr_(1.90)SnO_4∶Eu_(0.10)~(3+)荧光粉颗粒的粒径大小约为1~2μm,颗粒形状较规则;Sr_2SnO_4:Eu~(3+)荧光粉能够被392 nm的紫外光有效激发,在611 nm处发出较强的红色荧光,对应于Eu~(3+)的5D0→7F2电偶极跃迁。392 nm处的吸收峰与目前应用的紫外光LED芯片相匹配,表明Sr_2Sn O_4∶Eu~(3+)红色荧光材料在白光LED领域具有潜在的应用前景。  相似文献   

7.
使用溶胶凝胶法将Gd~(3+)和P~(5+)掺杂到纳米YVO4∶Eu~(3+)体系中,得到纳米红色荧光粉(Y,Gd)(V,P)O_4∶Eu~(3+).通过X射线衍射,透射电镜和扫描电镜测试表明,样品的结晶度较好,具有球形形貌并有较好的分散性,其颗粒尺寸约为40nm.通过对系列样品激发光谱的对比研究发现,掺入Gd~(3+)和P~(5+)后,样品在真空紫外区域内基质吸收的强度明显增加,对应在发射光谱中Eu~(3+)在619nm处的红光发射强度也明显增强,其中Eu~(3+)的5 D0-7 F2红光发射强度相当于商用红粉KX-504的109.7%,并且其色坐标比商用粉更加接近标准红色值,说明其色纯度更好.  相似文献   

8.
以LiOH·H_2O、Si(OC_2H_5)_4和Eu(NO_3)_3·6 H_2O为主要原料,采用简单的机械球磨法,在室温下合成了Li_2SiO_3:Eu~(3+)荧光粉前驱体,再经高温灼烧,得到一系列Li_2 SiO_3:x%Eu~(3+)红色荧光粉。研究了灼烧温度、保温时间及Eu~(3+)的物质的量浓度对产物的结构和发光性能的影响。结果表明,当x在1.5~15这个较宽的范围内,随着Eu~(3+)物质的量的增加,Li_2SiO_3:x%Eu~(3+)荧光粉的物相组成保持不变,且直到x值达到12之后,才出现了浓度淬灭现象;当灼烧温度为1173K、保温时间为2h时,荧光材料的发光强度达到最大值。在467 nm激发下,基于Eu~(3+)的~5D_0→~7F_2(615 nm)跃迁,Li_2SiO_3:Eu~(3+)荧光粉发射出强烈的红光。  相似文献   

9.
利用高温固相法合成NaLa4(SiO2)3F:Eu3+红色荧光粉,用X射线粉末衍射仪、扫描电镜和荧光分光光度计对荧光粉进行结构和性能表征,研究NaF用量、反应时间以及反应温度等条件对NaLa4(SiO4)3F:Eu3+发光性能的影响。结果表明,在395nm激发下荧光粉中的Eu3+离子主要发射5 D0→7F2(616nm)和5 D0→7 F1(590nm)跃迁;检测波长为615nm时,激发光谱由一个宽吸收带和若干吸收峰组成,其中在270nm附近的宽峰吸收带和394nm处的吸收峰最强,前者归属于O2--Eu3+离子间的电荷迁移吸收,后者归属于Eu3+离子的7 F0→5 L6跃迁吸收。NaF用量、反应时间以及反应温度对荧光粉的发光性能有一定的影响。  相似文献   

10.
文章采用高温固相法经两次煅烧合成了一系列橙红色Li_2CaSiO_4:xSm~(3+)荧光粉,并利用X射线衍射仪和荧光光谱仪对样品的物相及发光性质等进行了表征。结果表明,架状硅酸盐Li_2CaSiO_4:xSm~(3+)荧光粉为纯相;荧光样品在408nm近紫外光激发下,有4个发射峰,分别位于565、604、652和713nm处,归属于Sm~(3+) 的5G5/2→6HJ(J=5/2,7/2,9/2,11/2)的特征跃迁,其中位于604nm处的主发射峰的相对发光强度最强。Sm~(3+) 的最佳掺杂浓度为1.5mol%,浓度猝灭机理为电偶极-电偶极相互作用。计算了该荧光粉掺杂不同浓度Sm~(3+) 的荧光寿命。  相似文献   

11.
采用共沉淀法制备了Eu3+、B3+共掺杂的白光LED用CaMoO4红色荧光粉,研究了不同Eu3+和B3+掺杂量对样品发光性能的影响。利用XRD和PL分别对样品的结构和发光性能进行了表征,结果表明:900°C灼烧3 h后得到CaMoO4纯相;荧光发射强度随Eu3+掺杂量的增加先增大后减小,在Eu3+掺杂量为0.18(物质的量分数)时达到最大值;随着B3+掺杂量的增加,CaMoO4:Eu03.+18,Bx3+的荧光发射强度逐渐增强,当B3+的掺杂量超过0.1时,样品的颗粒发生严重团聚。  相似文献   

12.
GdAlO3:Eu3+荧光粉燃烧法合成及其发光性能   总被引:6,自引:0,他引:6  
采用柠檬酸溶胶凝胶燃烧法在较低的温度 (90 0℃ )下成功地合成单一晶相GdAlO3 :Eu3 发光粉体 ,紫外激发荧光光谱分析表明粉体 6 15nm和 5 93nm荧光发射源于Eu3 的5D0 7F2 和5D0 7F1跃迁 .研究了该方法中各工艺条件(pH值、柠檬酸 /金属离子比、煅烧温度 )对GdAlO3 :Eu3 发光性能的影响 ,得出获得最佳发光性能荧光粉体的工艺参数 .  相似文献   

13.
采用微波辐射法合成了Eu3+掺杂SrMoO4红色荧光粉.运用X线衍射仪及荧光分光光度计对该荧光粉的物相结构及发光性能等进行了分析和表征.结果表明:所得的样品为四方晶系、白钨矿结构的钼酸盐,空间群为I41/a.激发光谱在200~350nm处有1宽的吸收带,峰值位于290nm,属于Mo-O,Eu-O的电荷迁移带;350nm以后的吸收峰是由于Eu3+离子的f-f跃迁引起的.发射光谱由一系列发射峰组成,主峰位于617nm处,属于5 D0→7F2电偶极跃迁发射,发纯正的红光.同时,考察了微波吸收剂、反应时间、助熔剂等对发光性能的影响.  相似文献   

14.
用溶胶-凝胶燃烧法成功制备了Sr1-xEuxMoOt红色荧光粉,mXRD、TEM、荧光磷光分光光度计对其物相、形貌以及发光性能进行表征和研究.结果表明:在395 nm和464 nm两主激发峰均可得到616 nm处红光发射峰,属于Eu3+典型的5Do→7F2的跃迁所致,由464 nm激发得到的发射峰为单峰,峰宽较窄且发射强度较强,粉体平均粒径约为200 nm,颗粒粒度分布均匀.  相似文献   

15.
采用溶胶-凝胶法合成了Sr2SiO4:Dy3+粉体.用热重-差热(TG-DSC)、X射线衍射(XRD)、扫描电镜(SEM)等表征了样品的结构、形貌,研究了Dy掺杂浓度和Dy与Li的摩尔比对发光强度的影响.结果表明,所得样品为单斜晶系结构,呈长为800 nm的纤维状小颗粒,其发射光谱为一个多峰宽谱,主峰分别为480,571和661 nm;监测571 nm的发射峰,所得材料的激发光谱为一个多峰宽谱,主峰分别为327,352,366,391,429,453和478 nm;当Dy3+的掺杂浓度(摩尔分数)为4%,Dy与Li的摩尔比为1:1时,样品的发光强度最强.  相似文献   

16.
Bi 3+掺杂YAG:Ce3+荧光粉由溶胶凝胶法合成.结构和结晶过程分析表明,其结晶程度良好.光谱分析表明,Bi 3+的掺杂可以使Ce3+的荧光峰位红移.Ce3+的荧光强度随Bi 3+掺杂浓度的增加而增加,这是由Bi 3+与Ce3+之间的能量传递引起的.之后随着掺杂浓度的继续增加Ce3+的荧光强度减小,这是由浓度猝灭所致.  相似文献   

17.
采用沉淀法合成YVO4:Eu3+,Bi3+纳米晶.研究掺杂不同Bi3+浓度的YVO4:Eu3+纳米荧光粉在不同温度下的性质.分别采用X射线衍射仪、扫描电子显微镜及荧光光谱仪对荧光粉的结构、形貌和发光性能进行测试.结果表明:合成的荧光粉均为四方相YVO4,形貌呈规则的形状.Bi3+掺杂没有改变荧光粉的形貌.特征发射峰来自于Eu3+的5D0→7FJ跃迁,Bi3+掺杂改变了激发谱峰位,而且使得激发带有一定程度的展宽,同时Bi3+对Eu3+有敏化作用,在适量的浓度范围内纳米荧光粉的发光强度增强.  相似文献   

18.
采用高温固相反应成功地制备出Mn~(4+)激活的Mg_2TiO_4∶Mn~(4+)红色荧光粉,并对它的结构及发光性能进行了测试表征.实验结果表明:合成的样品能被270~570 nm的紫外光和蓝光有效地激发,产生很强的红光发射.样品的主发射峰位于660 nm左右,这对应于Mn~(4+)的2E2→4A2跃迁.通过Mn~(4+)掺杂浓度的调控,优化了Mg_2TiO_4∶Mn~(4+)的发光性能.最后将优化后的Mg_2TiO_4∶0.002 5Mn~(4+)荧光粉和YAG涂覆于~465 nm发射的Ga N芯片上,制作成暖白光发光二极管(LED).该LED器件表现出很强的暖白光发射.  相似文献   

19.
以乙酸锂、硝酸铝、钛酸丁酯、磷酸二氢铵为原料,利用溶胶-凝胶法合成锂离子Li1+xAlxTi2-x(PO4)3(x=0~0.4)固体电解质体系,检测结果表明:Li1+xAlxTi2-x(PO4)3体系具有较好的结晶性,合成的粉末与烧结片之间的结晶性与结构差异不大;当Al3+掺杂量逐步增加时,离子电导率逐渐增大,并在x=0.3时达到最大值,但掺杂量进一步增加时,离子电导率迅速下降;活化能的变化趋势与离子电导率相反.  相似文献   

20.
通过高温固相法制备Li2Sr Si O4:Dy3+,Eu3+荧光粉,采用X-射线粉末衍射(XRD)和阴极射线光谱分别对其物相、阴极射线发光性能进行研究,并研究Dy3+离子掺杂量对其发光性能的影响.结果表明,Dy3+和Eu3+均作为发光中心进入到Li2Sr Si O4的晶格中并未改变其晶格结构;在0.5~5 k V的电子束激发下,发射光谱主要由Dy3+和Eu3+的f-f特征跃迁组成;随着Dy3+掺杂量的增加,Dy3+的发射强度先增强后减弱,说明存在浓度猝灭,而Eu3+的发射强度有所提高,说明Dy3+对Eu3+有一定的敏化作用;Dy3+的最佳掺杂量为0.15;随着电压和电流的增加,样品的发光强度逐渐提高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号