首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 73 毫秒
1.
本文描述了模糊聚类Fuzzy C-Means(FCM)算法实现CT图像分割的方法和过程,该算法的主要特点是提供了一种非监督方式的模糊聚类,它可满足CT图像工作站以非监督方式分割图像的要求。 介绍了CT图像模糊分割的特点,并对实验过程和结果进行了讨论。  相似文献   

2.
文章首先阐述了图像K-L变换的基本原理,然后再对处理后的图像应用ISODATA,FCM等方法进行图像分割,最后运用FCM算法的思想,改进方案,将聚类与传统图像处理方法相结合,对街区卫星图像进行分析,实验结果表明,改进的方案明显提高了卫星地图图像的分割速度和精度。  相似文献   

3.
采用动态加权的模糊核聚类算法对CT医学图像进行分割.该算法对模糊核聚类算法中的特征向量进行动态加权,以自动削弱噪声特征向量在聚类中的作用,这样可以减小噪声对图像分割的干扰.实验结果表明,采用该种新算法对CT图像分割后,可以获得更清晰的分割图像.  相似文献   

4.
本文从利用空间信息的角度进行了研究,从邻域距离约束的角度出发,提出一个新的聚类目标函数,得到基于邻域距离约束的FCM图像分割算法。将该算法用于人工图像和实际图像的分割实验,实验结果表明了该算法的有效性以及对噪声的鲁棒性。  相似文献   

5.
利用图像直方图与模糊核聚类知识,提出一种新的分割方法,即先获取直方图数据信息结合期望值理论获得初始聚类中心,然后对图像进行模糊核聚类分割.本算法可以解决模糊核聚类算法对初始的聚类中心等信息较敏感的问题.实验结果表明,与标准的模糊C-均值(FCM)聚类分割方法相比,具有更优越的分割性能,分割结果与实际图像更为接近.  相似文献   

6.
K均值聚类是医学图像分割中最常用的方法之一,但K均值(K-means)聚类算法一个固有缺陷,在于若初始中心点的选取有重复的中心点,则聚类结果将含有空簇而使得聚类结果没有意义,进而影响图像分割效果。针对这一缺陷,首先提出在初始选点过程中进行聚类中心优化,避免产生重复的解决办法——初始点优化K均值算法(Initialization Optimized K-means,IOK-means),继而将初始选点数据域约束到图像直方图峰值集,进一步改善聚类效果,得到全局优化K均值聚类算法(Global Optimized K-means,GOK-means)。将GOK-means应用在脑部医学图像分割的实验表明:GOK-means能够将脑部灰质、白质及骨骼部分清晰地分割,与传统K均值算法IOKmeans相比,GOK-means的初始化聚类中心成功率达到100%,聚类总体均方差降低了54.9%,验证了GOK-means的有效性。  相似文献   

7.
图像分割是由图像处理到图像分析的一个关键步骤,同时它又是一个经典难题;数字显微全息图像由于其成像机理的复杂性以及对成像环境的高要求使图像的分割变得更为困难。文章将模糊聚类应用于数字显微全息图像的分割,实验证明这种方法简便而有效。  相似文献   

8.
基于分水岭变换和核聚类算法的图像分割   总被引:1,自引:0,他引:1  
提出了一种基于分水岭变换和核聚类算法的图像分割算法.通过分水岭变换把图像分割成多个小区域,为实现过分割小区域的合并,利用Mercer核把各小区域的灰度平均值映射到高维特征空间,使原来没有显现的特征突现出来,在特征空间进行更准确的聚类,为下一步图像分析提供较为准确的分割区域.实验结果证明了该算法的可行性和有效性.  相似文献   

9.
元启发式人工智能优化算法应用于模糊聚类图像分割一直是研究热点.树种算法(TSA)是一种比较有效的智能优化算法,但标准TSA中的固定判断参数ST影响算法的收敛速度.为此,提出了随迭代次数逐渐增大的变量,并且将步长因子构造相应的非线性递减函数,使得迭代初期侧重于树种的全局搜索而后期侧重于局部搜索,提高TSA算法收敛的精度和速度.将改进TSA算法用于模糊C均值聚类算法(FCM)聚类中心生成的过程得到基于改进树种算法的模糊聚类(ITSA_FCM),这一举措能有效地避免FCM陷入局部最优.改进的算法具备优异的聚类效果和较快的运行速度.  相似文献   

10.
针对CT医学图像灰度不均匀的特点,研究了基于改进的模糊聚类和ChanVese模型的图像分割.该分割模型综合利用基于空间信息的FCM算法、图像局部区域信息以及Chan-Vese模型,通过最小化能量函数的方式来进行曲线演化.基于空间信息的FCM算法对曲线的演化起到了一定的收敛作用,并且局部区域信息提高了分割质量.分割模型还考虑了分割效果和计算效率,降低了算法的时间复杂度,提高了算法的执行效率,从而提高了灰度不均匀图像分割的精度.  相似文献   

11.
针对聚类算法在图像分割上存在分割效果和时间效率上的不足,基于网格聚类算法ShrinClus,提出一种新的图像分割方法,该方法通过把图像的RGB空间分割成网格,将所有像素点分配到原子网格当中,然后对非空原子网格集合进行收缩聚类,通过查找低密度的边缘网格来确定簇的边界,最终将原子网格的分类结果映射至像素点.该方法能有效地分割在RGB空间中存在部分重叠的图像,算法具有接近线性的时间复杂度.最后通过实验验证了新方法的有效性.  相似文献   

12.
提出基于轮廓波变换的模糊聚类图像分割算法,从变换域的角度提高传统聚类算法的抗噪声能力.首先用轮廓波变换对含噪声图像消嗓,然后再进行聚类图像分割.实验结果表明:新算法能够获得较好的图像分割效果和质量.  相似文献   

13.
针对图像的二维阈值分割,采用了一种快速二维阈值分割与模糊聚类相混合的方法,以进一步减少二维阈值分割中的噪声与错误分割,实验结果表明,利用这种方法分割信噪比较低的图象,能够在很短的时间内得到更为满意的分割结果。  相似文献   

14.
研究了基于PCNN的人脸图像分割算法。利用简化型PCNN对人脸图像进行分割,根据人脸图像的灰度特征和空间信息的相关性,得到了人脸图像的神经元点火序列,该点火序列就是图像分割的结果。通过MATLAB仿真实现了该算法,表明该算法具有一定的工程价值。  相似文献   

15.
针对痕迹图像在比对与识别中的预处理要求,以图像像素灰度和邻域信息的二维矢量为聚类样本,以二维直方图确定阈值数,采用对样本进行加权的模糊c均值聚类算法对痕迹图像进行多阈值分割处理.实验结果表明,基于样本加权的模糊聚类算法速度快,对痕迹图像有较好的分割效果.  相似文献   

16.
针对基于粗糙熵的图像分割算法不能满足复杂图像的多类目标提取的需要,本文先利用K-均值聚类算法对图像进行区域分割,再利用基于粗糙熵的方法对分割结果进行目标提取,从而达到多阈值分割的目的。通过对遥感图像进行分割处理,证明了改进后算法的有效性。  相似文献   

17.
K均值算法利用K个聚类的均值作为聚类中心,通过对比样本到各聚类中心的距离,将样本划分到距离最近的聚类中,从而实现样本的聚类.分析了K均值算法的基本原理和实现步骤,并将其应用于数据聚类和图像分割,取得了较好的聚类效果.最后,针对K均值算法的不足之处,提出了改进措施,提高了K均值算法的聚类性能.  相似文献   

18.
针对目前基于模糊C-均值聚类图像分割算法的噪声敏感问题, 提出一种基于无监督可能性聚类的自动加权图像分割算法. 该算法先应用均值漂移迭代确定可能性C-均值聚类算法的初始化中心, 利用可能性聚类的模式搜索性质自动确定聚类划分; 然后根据像素间灰度值关系进行图像加权, 通过将加权系数与像素噪声的可能性相关联, 降低噪声对图像分割的影响. 实验结果表明, 相对于基于模糊C-均值聚类的图像分割算法, 该算法不仅取得了较好的分割效果, 而且无监督分割时计算效率更高, 对噪声的鲁棒性更强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号