首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Purohit P  Mitra A  Auerbach A 《Nature》2007,446(7138):930-933
Muscle contraction is triggered by the opening of acetylcholine receptors at the vertebrate nerve-muscle synapse. The M2 helix of this allosteric membrane protein lines the channel, and contains a 'gate' that regulates the flow of ions through the pore. We used single-molecule kinetic analysis to probe the transition state of the gating conformational change and estimate the relative timing of M2 motions in the alpha-subunit of the murine acetylcholine receptor. This analysis produces a 'Phi-value' for a given residue that reflects its open-like versus closed-like character at the transition state. Here we show that most of the residues throughout the length of M2 have a Phi-value of approximately 0.64 but that some near the middle have lower Phi-values of 0.52 or 0.31, suggesting that alphaM2 moves in three discrete steps. The core of the channel serves both as a gate that regulates ion flow and as a hub that directs the propagation of the gating isomerization through the membrane domain of the acetylcholine receptor.  相似文献   

2.
3.
4.
5.
E Carbone  H D Lux 《Nature》1984,310(5977):501-502
Calcium channels in excitable membranes are essential for many cellular functions. Recent analyses of the burst-firing mode of some vertebrate neurones suggest that changes in their functional state are controlled by a Ca conductance that is largely inactivated at resting membrane potentials (-50 to -60 mV), but becomes activated following a conditioning hyperpolarization of the cell membrane. Here, using chick and rat sensory neurones, we present evidence for a new type of Ca channel with time- and voltage-dependent properties which is probably responsible for the inactivation behaviour of the Ca conductance. At membrane potentials between -50 and +10 mV, openings of this channel last 3-6 ms and tend to occur in rapid succession. Inactivation of this channel is indicated by prolonged and eventually complete closures brought about by long-lasting depolarizing voltage steps. This channel coexists in isolated membrane patches with the more common Ca channel which is less sensitive to changes in holding potential and shows a considerably shorter average life time and smaller currents.  相似文献   

6.
爬壁机器人的轮式移动机构的转向功耗   总被引:3,自引:0,他引:3  
移动机构转向功耗是爬壁机器人的关键性能参数.该文基于Herz接触理论建立了轮式移动机构转向功耗计算模型,仿真分析了分别采用纯滚动转向、滑动转向及滚动滑动混合转向的3种典型轮式移动机构的原地转向功耗,并与双履带式移动机构进行了比较.研制了上述3种轮式移动机构样机.根据仿真及实验结果确定爬壁机器人采用纯滚动转向差动驱动方案,移动机构的原地转向阻力接近直线行驶时的滚动阻力,转向功耗小.  相似文献   

7.
Dudley AT  Ros MA  Tabin CJ 《Nature》2002,418(6897):539-544
The 'progress zone' model provides a framework for understanding progressive development of the vertebrate limb. This model holds that undifferentiated cells in a zone of fixed size at the distal tip of the limb bud (the progress zone) undergo a progressive change in positional information such that their specification is altered from more proximal to more distal fates. This positional change is thought to be driven by an internal clock that is kept active as long as the cells remain in the progress zone. However, owing to cell division, the most proximal of these cells are continually pushed outside the confines of the zone. As they exit, clock function ceases and cells become fixed with the positional value last attained while within the zone. In contrast to this model, our data suggest that the various limb segments are 'specified' early in limb development as distinct domains, with subsequent development involving expansion of these progenitor populations before differentiation. We also find, however, that the distal limb mesenchyme becomes progressively 'determined', that is, irreversibly fixed, to a progressively limited range of potential proximodistal fates.  相似文献   

8.
Novel mechanism of voltage-dependent gating in L-type calcium channels   总被引:20,自引:0,他引:20  
D Pietrobon  P Hess 《Nature》1990,346(6285):651-655
Activation of voltage-dependent calcium channels by membrane depolarization triggers a variety of key cellular responses, such as contraction in heart and smooth muscle and exocytotic secretion in endocrine and nerve cells. Modulation of calcium channel gating is believed to be the mechanism by which several neurotransmitters, hormones and therapeutic agents mediate their effects on cell function. Here we describe a novel type of voltage-dependent equilibrium between different gating patterns of dihydropyridine-sensitive (L-type) cardiac Ca2+ channels. Strong depolarizations drive the channel from its normal gating pattern into a mode of gating characterized by long openings and high open probability. The rate constants for conversions between gating modes, estimated from single channel recordings, are much slower than normal channel opening and closing rates, but the equilibrium between modes is almost as steeply voltage-dependent as channel activation and deactivation at more negative potentials. This new mechanism of voltage-dependent gating can explain previous reports of activity-dependent Ca2+ channel potentiation in cardiac and other cells and forms a potent mechanism by which Ca2+ uptake into cells could be regulated.  相似文献   

9.
During vertebrate embryo development, the breaking of the initial bilateral symmetry is translated into asymmetric gene expression around the node and/or in the lateral plate mesoderm. The earliest conserved feature of this asymmetric gene expression cascade is the left-sided expression of Nodal, which depends on the activity of the Notch signalling pathway. Here we present a mathematical model describing the dynamics of the Notch signalling pathway during chick embryo gastrulation, which reveals a complex and highly robust genetic network that locally activates Notch on the left side of Hensen's node. We identify the source of the asymmetric activation of Notch as a transient accumulation of extracellular calcium, which in turn depends on left-right differences in H+/K+-ATPase activity. Our results uncover a mechanism by which the Notch signalling pathway translates asymmetry in epigenetic factors into asymmetric gene expression around the node.  相似文献   

10.
11.
Kupperman E  An S  Osborne N  Waldron S  Stainier DY 《Nature》2000,406(6792):192-195
Coordinated cell migration is essential in many fundamental biological processes including embryonic development, organogenesis, wound healing and the immune response. During organogenesis, groups of cells are directed to specific locations within the embryo. Here we show that the zebrafish miles apart (mil) mutation specifically affects the migration of the heart precursors to the midline. We found that mutant cells transplanted into a wild-type embryo migrate normally and that wild-type cells in a mutant embryo fail to migrate, suggesting that mil may be involved in generating an environment permissive for migration. We isolated mil by positional cloning and show that it encodes a member of the lysosphingolipid G-protein-coupled receptor family. We also show that sphingosine-1-phosphate is a ligand for Mil, and that it activates several downstream signalling events that are not activated by the mutant alleles. These data reveal a new role for lysosphingolipids in regulating cell migration during vertebrate development and provide the first molecular clues into the fusion of the bilateral heart primordia during organogenesis of the heart.  相似文献   

12.
Toyoshima C  Nomura H  Tsuda T 《Nature》2004,432(7015):361-368
P-type ion transporting ATPases are ATP-powered ion pumps that establish ion concentration gradients across biological membranes. Transfer of bound cations to the lumenal or extracellular side occurs while the ATPase is phosphorylated. Here we report at 2.3 A resolution the structure of the calcium-ATPase of skeletal muscle sarcoplasmic reticulum, a representative P-type ATPase that is crystallized in the absence of Ca2+ but in the presence of magnesium fluoride, a stable phosphate analogue. This and other crystal structures determined previously provide atomic models for all four principal states in the reaction cycle. These structures show that the three cytoplasmic domains rearrange to move six out of ten transmembrane helices, thereby changing the affinity of the Ca2+-binding sites and the gating of the ion pathway. Release of ADP triggers the opening of the lumenal gate and release of phosphate its closure, effected mainly through movement of the A-domain, the actuator of transmembrane gates.  相似文献   

13.
Shcheprova Z  Baldi S  Frei SB  Gonnet G  Barral Y 《Nature》2008,454(7205):728-734
Ageing and the mortality that ensues are sustainable for the species only if age is reset in newborns. In budding yeast, buds are made young whereas ageing factors, such as carbonylated proteins and DNA circles, remain confined to the ageing mother cell. The mechanisms of this confinement and their relevance are poorly understood. Here we show that a septin-dependent, lateral diffusion barrier forms in the nuclear envelope and limits the translocation of pre-existing nuclear pores into the bud. The retention of DNA circles within the mother cell depends on the presence of the diffusion barrier and on the anchorage of the circles to pores mediated by the nuclear basket. In accordance with the diffusion barrier ensuring the asymmetric segregation of nuclear age-determinants, the barrier mutant bud6Delta fails to properly reset age in buds. Our data involve septin-dependent diffusion barriers in the confinement of ageing factors to one daughter cell during asymmetric cell division.  相似文献   

14.
A motion control structure used for autonomous walking on uneven terrain with a hexapod biomimetic robot is proposed based on function-behavior-integration.In the gait planning level, a set of local rules operating between adjacent legs were put forward and the theory of finite state machine was employed to model them; further, a distributed network of local rules was constructed to adaptively adjust the fluctuation of inter-leg phase sequence.While in the leg-end trajectory planning level, combined polynomial curve was adopted to generate foot trajectory, which could realize real-time control of robot posture and accommodation to terrain conditions.In the simulation experiments, adaptive regulation of inter-leg phase sequence, omnidirectional locomotion and ground accommodation were realized, moreover, statically stable free gait was obtained simultaneously, which provided hexapod robot with the capability of walking on slightly irregular terrain reliably and expeditiously.  相似文献   

15.
Supercontracting striated muscle in a vertebrate   总被引:1,自引:0,他引:1  
M J Rice 《Nature》1973,243(5404):238-240
  相似文献   

16.
Osborne LC  Lisberger SG  Bialek W 《Nature》2005,437(7057):412-416
Suppose that the variability in our movements is caused not by noise in the motor system itself, nor by fluctuations in our intentions or plans, but rather by errors in our sensory estimates of the external parameters that define the appropriate action. For tasks in which precision is at a premium, performance would be optimal if no noise were added in movement planning and execution: motor output would be as accurate as possible given the quality of sensory inputs. Here we use visually guided smooth-pursuit eye movements in primates as a testing ground for this notion of optimality. In response to repeated presentations of identical target motions, nearly 92% of the variance in eye trajectory can be accounted for as a consequence of errors in sensory estimates of the speed, direction and timing of target motion, plus a small background noise that is observed both during eye movements and during fixations. The magnitudes of the inferred sensory errors agree with the observed thresholds for sensory discrimination by perceptual systems, suggesting that the very different neural processes of perception and action are limited by the same sources of noise.  相似文献   

17.
A vertebrate globin expressed in the brain   总被引:135,自引:0,他引:135  
Burmester T  Weich B  Reinhardt S  Hankeln T 《Nature》2000,407(6803):520-523
Haemoglobins and myoglobins constitute related protein families that function in oxygen transport and storage in humans and other vertebrates. Here we report the identification of a third globin type in man and mouse. This protein is predominantly expressed in the brain, and therefore we have called it neuroglobin. Mouse neuroglobin is a monomer with a high oxygen affinity (half saturation pressure, P50 approximately 2 torr). Analogous to myoglobin, neuroglobin may increase the availability of oxygen to brain tissue. The human neuroglobin gene (NGB), located on chromosome 14q24, has a unique exon-intron structure. Neuroglobin represents a distinct protein family that diverged early in metazoan evolution, probably before the Protostomia/Deuterostomia split.  相似文献   

18.
Che H  Drake JF  Swisdak M 《Nature》2011,474(7350):184-187
During magnetic reconnection, the field lines must break and reconnect to release the energy that drives solar and stellar flares and other explosive events in space and in the laboratory. Exactly how this happens has been unclear, because dissipation is needed to break magnetic field lines and classical collisions are typically weak. Ion-electron drag arising from turbulence, dubbed 'anomalous resistivity', and thermal momentum transport are two mechanisms that have been widely invoked. Measurements of enhanced turbulence near reconnection sites in space and in the laboratory support the anomalous resistivity idea but there has been no demonstration from measurements that this turbulence produces the necessary enhanced drag. Here we report computer simulations that show that neither of the two previously favoured mechanisms controls how magnetic field lines reconnect in the plasmas of greatest interest, those in which the magnetic field dominates the energy budget. Rather, we find that when the current layers that form during magnetic reconnection become too intense, they disintegrate and spread into a complex web of filaments that causes the rate of reconnection to increase abruptly. This filamentary web can be explored in the laboratory or in space with satellites that can measure the resulting electromagnetic turbulence.  相似文献   

19.
C A Middleton 《Nature》1979,282(5735):203-205
As a cultured fibroblast moves, particles or pieces of debris attached to its surface move backwards with respect to both the cell and the substrate1,2, as also do concanavalin A (Con A) receptors in the membrane of the leading lamella3. One suggested explanation is that membrane components from the cytoplasm are assembled and introduced into the surface membrane of the moving cell close to its leading edge and flow backwards to a 'sink'; there the membrane is disassembled, and its components enter the cytoplasm and flow forward within the cell, to be re-introduced later into the surface membrane1,4. However, because cell-surface receptors can be redistributed as a result of cross-linking by external ligands5,6 it has been proposed that the backward flow of Con A receptors and particles may result from such a cross-linking rather than from a flow of intact cell membrane7,8. To investigate these alternatives, I have studied moving fibroblasts by means of a cell membrane label that does not induce the redistribution of its receptors. My results do not seem compatible with the membrane flow model.  相似文献   

20.
Changes in the amount of DNA in cell nuclei during vertebrate evolution   总被引:2,自引:0,他引:2  
H Szarski 《Nature》1970,226(5246):651-652
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号