首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silencing of DNA repair genes plays a critical role in the development of the cancer because these genes, functioning normally, would prevent the accumulation of mutations leading to carcinogenesis. Epigenetic gene silencing is an alternative mechanism to genetic gene aberration, inactivating those genes in cancer. DNA methylation and histone modification are the major factors for epigenetic regulation of gene expression. Here, we describe recent advances in understanding of epigenetic silencing of DNA repair genes and their epigenetic mechanisms involving DNA methylation and histone modification.  相似文献   

2.
3.
DNA methylation is the major epigenetic modification and it is involved in the negative regulation of gene expression. Its alteration can lead to neoplastic transformation. Several biomolecular approaches are nowadays used to study this modification on DNA, but also on RNA molecules, which are known to play a role in different biological processes. RNA methylation is one of the most common RNA modifications and 5-methylcytosine presence has recently been suggested in mRNA. However, an analysis of nucleic acid methylation at electron microscope is still lacking. Therefore, we visualized DNA methylation status and RNA methylation sites in the interphase nucleus of HeLa cells and rat hepatocytes by ultrastructural immunocytochemistry and cytochemical staining. This approach represents an efficient alternative to study nucleic acid methylation. In particular, this ultrastructural method makes the visualization of this epigenetic modification on a single RNA molecule possible, thus overcoming the technical limitations for a (pre-)mRNA methylation analysis.  相似文献   

4.
The function of DNA methylation has been investigated in depth in vertebrate and plant genomes, establishing that it is involved in gene silencing and transposon control. Data regarding insect methylation, even if still scanty, apparently argue against evolutionary conservation of DNA methylation functions. Cytosine methylation, therefore, proves to be an epigenetic tool repeatedly used to accomplish different functions in different taxa according to a sort of epigenetic tinkering occurring during evolution.  相似文献   

5.
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.  相似文献   

6.
7.
Epigenetic mechanisms in mammals   总被引:11,自引:1,他引:10  
DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.  相似文献   

8.
Memory   总被引:2,自引:0,他引:2  
In this review we address the idea that conservation of epigenetic mechanisms for information storage represents a unifying model in biology, with epigenetic mechanisms being utilized for cellular memory at levels from behavioral memory to development to cellular differentiation. Epigenetic mechanisms typically involve alterations in chromatin structure, which in turn regulate gene expression. An emerging idea is that the regulation of chromatin structure through histone acetylation and DNA methylation may mediate long-lasting behavioral change in the context of learning and memory. We find this idea fascinating because similar mechanisms are used for triggering and storing long-term 'memory' at the cellular level, for example when cells differentiate. An additional intriguing aspect of the hypothesis of a role for epigenetic mechanisms in information storage is that lifelong behavioral memory storage may involve lasting changes in the physical, three-dimensional structure of DNA itself.  相似文献   

9.
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein–Taybi syndrome, Coffin–Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.  相似文献   

10.
11.
12.
The vascular endothelium plays a crucial role in regulating normal blood vessel physiology. The gene products responsible are commonly expressed exclusively, or preferentially, in this cell type. However, despite the importance of regulated gene expression in the vascular endothelium, relatively little is known about the mechanisms that restrict endothelial-specific gene expression to this cell type. While significant progress has been made towards understanding the regulation of endothelial genes through cis/trans paradigms, it has become apparent that additional mechanisms must also be operative. For example, chromatin-based mechanisms, including cell-specific DNA methylation patterns and post-translational histone modifications, have recently been demonstrated to play important roles in the cell-specific expression of endothelial nitric oxide synthase (eNOS). This review investigates the involvement of epigenetic regulatory mechanisms in vascular endothelial cell-specific gene expression using eNOS as a prototypical model, and will address the possible contributions of these pathways to diseases of the vasculature. Received 13 September 2005; received after revision 13 October 2005; accepted 19 October 2005  相似文献   

13.
Little information is available regarding mechanistic links between epigenetic modifications and autoimmune diseases. It seems plausible to surmise that aberrant gene expression and energy metabolism would disrupt immune tolerance, which could ultimately result in autoimmune responses. Metaboloepigenetics is an emerging paradigm that defines the interrelationships between metabolism and epigenetics. Epigenetic modifications, such as the methylation/demethylation of DNA and histone proteins and histone acetylation/deacetylation can be dynamically produced and eliminated by a group of enzymes that consume several metabolites derived from various physiological pathways. Recent insights into cellular metabolism have demonstrated that environmental stimuli such as dietary exposure and nutritional status act through the variation in concentration of metabolites to affect epigenetic regulation and breakdown biochemical homeostasis. Metabolites, including S-adenosylmethionine, acetyl-CoA, nicotinamide adenine dinucleotide, α-ketoglutarate, and ATP serve as cofactors for chromatin-modifying enzymes, such as methyltransferases, deacetylases and kinases, which are responsible for chromatin remodelling. The concentration of crucial nutrients, such as glucose, glutamine, and oxygen, spatially and temporally modulate epigenetic modifications to regulate gene expression and the reaction to stressful microenvironments in disease pathology. In this review, we focus on the interaction between metabolic intermediates and epigenetic modifications, integrating environmental signals with programmes through modification of the epigenome–metabolome to speculate as to how this may influence autoimmune diseases.  相似文献   

14.
Biological aspects of cytosine methylation in eukaryotic cells.   总被引:7,自引:0,他引:7  
M Hergersberg 《Experientia》1991,47(11-12):1171-1185
The existence in eukaryotes of a fifth base, 5-methylcytosine, and of tissue-specific methylation patterns have been known for many years, but except for a general association with inactive genes and chromatin the exact function of this DNA modification has remained elusive. The different hypotheses regarding the role of DNA methylation in regulation of gene expression, chromatin structure, development, and diseases, including cancer are summarized, and the experimental evidence for them is discussed. Structural and functional properties of the eukaryotic DNA cytosine methyltransferase are also reviewed.  相似文献   

15.
16.
The existence in eukaryotes of a fifth base, 5-methylcytosine, and of tissue-specific methylation patterns have been known for many years, but except for a general association with inactive genes and chromatin the exact function of this DNA modification has remained elusive. The different hypotheses regarding the role of DNA methylation in regulation of gene expression, chromatin structure, development, and diseases, including cancer are summarized, and the experimental evidence for them is discussed. Structural and functional properties of the eukaryotic DNA cytosine methyltransferase are also reviewed.  相似文献   

17.
18.
19.
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号