首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chloride impermeability in cystic fibrosis   总被引:46,自引:0,他引:46  
P M Quinton 《Nature》1983,301(5899):421-422
Cystic fibrosis is the most common fatal genetic disease affecting caucasians and is perhaps best characterized as an exocrinopathy involving a disturbance in fluid and electrolyte transport. A high NaCl concentration in the sweat is characteristic of patients with this disease; the basic physiological reason for this abnormality is unknown. We have microperfused isolated sweat ducts from control subjects and cystic fibrosis patients, and report here results which suggest that abnormally low Cl- permeability in cystic fibrosis leads to poor reabsorption of NaCl in the sweat duct, and hence to a high concentration of NaCl in the sweat.  相似文献   

2.
Chloride impermeability of epithelial cells can account for many of the experimental and clinical manifestations of cystic fibrosis (CF). Activation of apical-membrane Cl- channels by cyclic AMP-mediated stimuli is defective in CF airway epithelial cells, despite normal agonist-induced increases in cellular cAMP levels. This defect in Cl- channel regulation has been localized to the apical membrane by exposing the cytoplasmic surface of excised membrane patches to the catalytic subunit (C subunit) of cAMP-dependent protein kinase and ATP. In membranes from normal cells, C-subunit activated Cl- channels with properties identical to those stimulated by cAMP-dependent agonists during cell-attached recording. Activation by the C subunit was not observed in CF membranes, but the presence of Cl- channels was verified by voltage-induced activation. The failure of the C subunit to activate the Cl- channels of CF membranes indicates that the block in their cAMP-mediated activation lies distal to induction of cAMP-dependent protein kinase activity and focuses our attention on the Cl- channel and its membrane-associated regulatory proteins as the probable site of the CF defect.  相似文献   

3.
M Li  J D McCann  C M Liedtke  A C Nairn  P Greengard  M J Welsh 《Nature》1988,331(6154):358-360
Chloride (Cl-) secretion by the airway epithelium regulates, in part, the quantity and composition of the respiratory tract fluid, thereby facilitating mucociliary clearance. The rate of Cl- secretion is controlled by apical membrane Cl- channels. Apical Cl- channels are opened and Cl- secretion is stimulated by a variety of hormones and neurotransmitters that increase intracellular levels of cyclic AMP (cAMP). In cystic fibrosis (CF), a common lethal genetic disease of Caucasians, airway, sweat-gland duct, secretory-coil and possibly other epithelia are anion impermeable. This abnormality may explain several of the clinical manifestations of the disease. The Cl- impermeability in CF-airway epithelia has been localized to the apical cell membrane, where regulation of Cl- channels is abnormal: hormonal secretagogues stimulate cAMP accumulation appropriately but Cl- channels fail to open. Here we report that the purified catalytic subunit of cAMP-dependent protein kinase plus ATP opens Cl- channels in excised, cell-free patches of membrane from normal cells, but fails to open Cl- channels in CF cells. These results indicate that in normal cells, the cAMP-dependent protein kinase phosphorylates the Cl- channel or an associated regulatory protein, causing the channel to open. The failure of CF Cl- channels to open suggests a defect either in the channel or in such an associated regulatory protein.  相似文献   

4.
Cystic fibrosis is associated with defective regulation of apical membrane chloride channels in airway epithelial cells. These channels in normal cells are activated by cyclic AMP-dependent protein kinase and protein kinase C. In cystic fibrosis these kinases fail to activate otherwise normal Cl- channels. But Cl- flux in cystic fibrosis cells, as in normal cells, can be activated by raising intracellular Ca2+ (refs 5-10). We report here whole-cell patch clamp studies of normal and cystic fibrosis-derived airway epithelial cells showing that Cl- channel activation by Ca2+ is mediated by multifunctional Ca2+/calmodulin-dependent protein kinase. We find that intracellular application of activated kinase and ATP activates a Cl- current similar to that activated by a Ca2+ ionophore, that peptide inhibitors of either the kinase or calmodulin block Ca2(+)-dependent activation of Cl- channels, and that a peptide inhibitor of protein kinase C does not block Ca2(+)-dependent activation. Ca2+/calmodulin activation of Cl- channels presents a pathway with therapeutic potential for circumventing defective regulation of Cl- channels in cystic fibrosis.  相似文献   

5.
The cystic fibrosis transmembrane conductance regulator (CFTR) was expressed in cultured cystic fibrosis airway epithelial cells and Cl- channel activation assessed in single cells using a fluorescence microscopic assay and the patch-clamp technique. Expression of CFTR, but not of a mutant form of CFTR (delta F508), corrected the Cl- channel defect. Correction of the phenotypic defect demonstrates a causal relationship between mutations in the CFTR gene and defective Cl- transport which is the hallmark of the disease.  相似文献   

6.
Cystic fibrosis (CF) is a life-shortening disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Although bacterial lung infection and the resulting inflammation cause most of the morbidity and mortality, how the loss of CFTR function first disrupts airway host defence has remained uncertain. To investigate the abnormalities that impair elimination when a bacterium lands on the pristine surface of a newborn CF airway, we interrogated the viability of individual bacteria immobilized on solid grids and placed onto the airway surface. As a model, we studied CF pigs, which spontaneously develop hallmark features of CF lung disease. At birth, their lungs lack infection and inflammation, but have a reduced ability to eradicate bacteria. Here we show that in newborn wild-type pigs, the thin layer of airway surface liquid (ASL) rapidly kills bacteria in vivo, when removed from the lung and in primary epithelial cultures. Lack of CFTR reduces bacterial killing. We found that the ASL pH was more acidic in CF pigs, and reducing pH inhibited the antimicrobial activity of ASL. Reducing ASL pH diminished bacterial killing in wild-type pigs, and, conversely, increasing ASL pH rescued killing in CF pigs. These results directly link the initial host defence defect to the loss of CFTR, an anion channel that facilitates HCO(3)(-) transport. Without CFTR, airway epithelial HCO(3)(-) secretion is defective, the ASL pH falls and inhibits antimicrobial function, and thereby impairs the killing of bacteria that enter the newborn lung. These findings suggest that increasing ASL pH might prevent the initial infection in patients with CF, and that assaying bacterial killing could report on the benefit of therapeutic interventions.  相似文献   

7.
Chloride channels are different   总被引:4,自引:0,他引:4  
Jentsch TJ 《Nature》2002,415(6869):276-277
  相似文献   

8.
hERG potassium channels are essential for normal electrical activity in the heart. Inherited mutations in the HERG gene cause long QT syndrome, a disorder that predisposes individuals to life-threatening arrhythmias. Arrhythmia can also be induced by a blockage of hERG channels by a surprisingly diverse group of drugs. This side effect is a common reason for drug failure in preclinical safety trials. Insights gained from the crystal structures of other potassium channels have helped our understanding of the block of hERG channels and the mechanisms of gating.  相似文献   

9.
Role of long extracellular channels in fluid transport across epithelia   总被引:13,自引:0,他引:13  
J M Diamond  J M Tormey 《Nature》1966,210(5038):817-820
  相似文献   

10.
Davies K 《Nature》1992,357(6377):425
More than 98% of mutations causing cystic fibrosis can be detected in a Celtic population in Brittany, France. What, though, are the prospects for screening of entire populations for carriers?... Even if technology improves to the point where 95% of CF mutations can be detected routinely, and population screening becomes feasible, a more contentious matter is that of counselling and education, especially as there is every reason to believe that the lifespan of CF patients will continue to grow as therapies improve....  相似文献   

11.
The voltage-gated potassium channels and their relatives   总被引:35,自引:0,他引:35  
Yellen G 《Nature》2002,419(6902):35-42
The voltage-gated potassium channels are the prototypical members of a family of membrane signalling proteins. These protein-based machines have pores that pass millions of ions per second across the membrane with astonishing selectivity, and their gates snap open and shut in milliseconds as they sense changes in voltage or ligand concentration. The architectural modules and functional components of these sophisticated signalling molecules are becoming clear, but some important links remain to be elucidated.  相似文献   

12.
13.
Voltage-dependent calcium and potassium channels in retinal glial cells   总被引:1,自引:0,他引:1  
E A Newman 《Nature》1985,317(6040):809-811
Glial cells, which outnumber neurones in the central nervous system, have traditionally been considered to be electrically inexcitable and to play only a passive role in the electrical activity of the brain. Recent reports have demonstrated, however, that certain glial cells, when maintained in primary culture, possess voltage-dependent ion channels. It remains to be demonstrated whether these channels are also present in glial cells in vivo. I show here that Müller cells, the principal glial cells of the vertebrate retina, can generate 'Ca2+ spikes' in freshly excised slices of retinal tissue. In addition, voltage-clamp studies of enzymatically dissociated Müller cells demonstrate the presence of four types of voltage-dependent ion channels: a Ca2+ channel, a Ca2+-activated K+ channel, a fast-inactivating (type A) K+ channel and an inward-rectifying K+ channel. Currents generated by these voltage-dependent channels may enhance the ability of Müller cells to regulate extracellular K+ levels in the retina and may be involved in the generation of the electroretinogram.  相似文献   

14.
15.
J M Ritchie  H P Rang  R Pellegrino 《Nature》1981,294(5838):257-259
  相似文献   

16.
Ramu Y  Xu Y  Lu Z 《Nature》2006,442(7103):696-699
Voltage-gated ion channels in excitable nerve, muscle, and endocrine cells generate electric signals in the form of action potentials. However, they are also present in non-excitable eukaryotic cells and prokaryotes, which raises the question of whether voltage-gated channels might be activated by means other than changing the voltage difference between the solutions separated by the plasma membrane. The search for so-called voltage-gated channel activators is motivated in part by the growing importance of such agents in clinical pharmacology. Here we report the apparent activation of voltage-gated K+ (Kv) channels by a sphingomyelinase.  相似文献   

17.
The gene responsible for cystic fibrosis (CF) has recently been identified and is predicted to encode a protein of 1,480 amino acids called the CF transmembrane conductance regulator (CFTR). Several functional regions are thought to exist in the CFTR protein, including two areas for ATP-binding, termed nucleotide-binding folds (NBFs), a regulatory (R) region that has many possible sites for phosphorylation by protein kinases A and C, and two hydrophobic regions that probably interact with cell membranes. The most common CF gene mutation leads to omission of phenylalanine residue 508 in the putative first NBF, indicating that this region is functionally important. To determine whether other mutations occur in the NBFs of CFTR, we determined the nucleotide sequences of exons 9, 10, 11 and 12 (encoding the first NBF) and exons 20, 21 and 22 (encoding most of the second NBF) from 20 Caucasian and 18 American-black CF patients. One cluster of four mutations was discovered in a 30-base-pair region of exon 11. Three of these mutations cause amino-acid substitutions at residues that are highly conserved among the CFTR protein, the multiple-drug-resistance proteins and ATP-binding membrane-associated transport proteins. The fourth mutation creates a premature termination signal. These mutations reveal a functionally important region in the CFTR protein and provide further evidence that CFTR is a member of the family of ATP-dependent transport proteins.  相似文献   

18.
Xia XM  Zeng X  Lingle CJ 《Nature》2002,418(6900):880-884
Large conductance, Ca(2+)- and voltage-activated K(+) channels (BK) respond to two distinct physiological signals -- membrane voltage and cytosolic Ca(2+) (refs 1, 2). Channel opening is regulated by changes in Ca(2+) concentration spanning 0.5 micro M to 50 mM (refs 2-5), a range of Ca(2+) sensitivity unusual among Ca(2+)-regulated proteins. Although voltage regulation arises from mechanisms shared with other voltage-gated channels, the mechanisms of Ca(2+) regulation remain largely unknown. One potential Ca(2+)-regulatory site, termed the 'Ca(2+) bowl', has been located to the large cytosolic carboxy terminus. Here we show that a second region of the C terminus, the RCK domain (regulator of conductance for K(+) (ref. 12)), contains residues that define two additional regulatory effects of divalent cations. One site, together with the Ca(2+) bowl, accounts for all physiological regulation of BK channels by Ca(2+); the other site contributes to effects of millimolar divalent cations that may mediate physiological regulation by cytosolic Mg(2+) (refs 5, 13). Independent regulation by multiple sites explains the large concentration range over which BK channels are regulated by Ca(2+). This allows BK channels to serve a variety of physiological roles contingent on the Ca(2+) concentration to which the channels are exposed.  相似文献   

19.
20.
The open pore conformation of potassium channels   总被引:69,自引:0,他引:69  
Jiang Y  Lee A  Chen J  Cadene M  Chait BT  MacKinnon R 《Nature》2002,417(6888):523-526
Living cells regulate the activity of their ion channels through a process known as gating. To open the pore, protein conformational changes must occur within a channel's membrane-spanning ion pathway. KcsA and MthK, closed and opened K(+) channels, respectively, reveal how such gating transitions occur. Pore-lining 'inner' helices contain a 'gating hinge' that bends by approximately 30 degrees. In a straight conformation four inner helices form a bundle, closing the pore near its intracellular surface. In a bent configuration the inner helices splay open creating a wide (12 A) entryway. Amino-acid sequence conservation suggests a common structural basis for gating in a wide range of K(+) channels, both ligand- and voltage-gated. The open conformation favours high conduction by compressing the membrane field to the selectivity filter, and also permits large organic cations and inactivation peptides to enter the pore from the intracellular solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号